Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (2): 118-124    DOI: 10.11901/1005.3093.2019.346
ARTICLES Current Issue | Archive | Adv Search |
Effect of Residual Carbon on Primary and Secondary Recrystallization of Grain-oriented Silicon Steel
FU Yongjun,LEI Jialiu(),LIAO Qingling,ZHAO Dongnan,ZHANG Yucheng
School of Materials Science and Engineering, Hubei Polytechnic University, Huangshi 435000,China
Cite this article: 

FU Yongjun,LEI Jialiu,LIAO Qingling,ZHAO Dongnan,ZHANG Yucheng. Effect of Residual Carbon on Primary and Secondary Recrystallization of Grain-oriented Silicon Steel. Chinese Journal of Materials Research, 2020, 34(2): 118-124.

Download:  HTML  PDF(6520KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of residual carbon on the microstructure of the primary and secondary recrystallization of the grain-oriented silicon steel was investigated, whereas, the carbon content of the steel was controlled via varying the steam amount in the gas mixture 25%H2+75%N2 for the annealing process. The results show that the average grain size of primary recrystallization decreased and the grain size difference between the surface portion and the center portion increase with the increase of residual carbon content in the steel subjected to decarburization annealing. The texture of primary recrystallization changed from strong {111}<110> or {111}<112> into strong {112}<110> , while the texture of some Goss grains in 1/4 layer or {111}<112> grains was also altered. The steel subjected to high temperature annealing had imperfect secondary recrystallization and bad magnetic properties when the carbon content in the sample was higher than 0.0200%. Phase transformation is the main reason that led to the above phenomena.

Key words:  metallic materials      grain-oriented silicon steel      decarburization annealing      carbon content      magnetic properties      texture     
Received:  15 July 2019     
ZTFLH:  TG142.77  
Fund: National Natural Science Foundation of China(51704105);National High Technology Research and Development Program of China(2012AA03A505);Hubei Provincial Central Committee Guides Local Science and Technology Development Project(2019ZYYD006);Guiding Projects of Science and Technology Research Program of Hubei Education Department(B2019227);Scientific Research Projects of Hubei Polytechnic University(18xjz05R)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.346     OR     https://www.cjmr.org/EN/Y2020/V34/I2/118

ElementCSiMnPSNAls
Content/%0.04553.150.0700.0100.0230.00500.013
Table 1  Main element content for grain oriented silicon steel subjected to cold rolling
Fig.1  Schematic diagram of decarburization annealing for oriented silicon steel
Fig.2  Process scheme of high temperature annealing
Fig.3  Decarburization amount and residual carbon content of grain oriented silicon after decarburization annealing at different water bath temperature
Fig.4  Microstructure of samples with different residual carbon content after decarburization annealing for grain oriented silicon steel (a) C=0.0029%; (b) C=0.0088%; (c) C=0.0152%; (d) C=0.0200%; (e) C=0.0265%
Fig.5  Average grain size of samples subjected to decarburization annealing for grain oriented silicon steel with different residual carbon content
Fig.6  Macrostructure of samples with different residual carbon content after high temperature annealing for grain oriented silicon steel (a) C=0.0029%; (b) C=0.0088%; (c) C=0.0152%; (d) C=0.0200%; (e) C=0.0265%
Fig.7  Recrystallization ratio and grain size of secondary recrystallization for grain oriented silicon steel with different residual carbon content
Fig.8  Effect of residual carbon content on magnetic properties of grain oriented silicon steel after high temperature annealing
Fig.9  Microstructure of grain oriented silicon steel after intermediate annealing
Fig.10  EBSD oriented images of samples after decarburization annealing for grain oriented silicon steel with different residual carbon content (a) Mapping image of sample with 0.0029% carbon; (b) Mapping image of sample with 0.0152% carbon; (c) Mapping image of sample with 0.0265% carbon; (d) ODF section diagram (φ2=45°) of sample with 0.0029% carbon; (e) ODF section diagram (φ2=45°) of sample with 0.0152% carbon; (f) ODF section diagram (φ2=45°) of sample with 0.0265% carbon; (g) Texture type on ODF section diagram (φ2=45°)
Fig.11  Effect of annealing temperature on γ content of sample with 0.0265% carbon
[1] He Z Z. Electrical Steel [M]. Beijing: The Press of Metallurgical Industry, 1996
[1] (何忠治. 电工钢 [M]. 北京: 冶金工业出版社, 1996)
[2] An X, Cawley J, Rainforth W M, et al. A study of internal oxidation in carburized steels by glow discharge optical emission spectroscopy and scanning electron microscopy [J]. Spectrochim. Acta, 2003, 58(4): 689
[3] Marini P, Abbruzzese G. Decarburization rate related to surface oxidation of grain oriented silicon steel [J]. J. Magn. Magn. Mater., 1982, 26(1): 15
[4] YANG S Z, DAI F Q, GUO Y. Numerical simulation analysis of the decarburization process of oriented silicon steel [J]. J. Wuhan Univ. Sci.Technol., 2016, 39(4): 253
[4] (杨守洲, 戴方钦, 郭 悦. 取向硅钢脱碳过程的数值模拟分析 [J]. 武汉科技大学学报, 2016, 39(4): 253)
[5] Wu Z H, Hu S T, Guo Y, et al. Effects of annealing condition on decarburization of grain oriented silicon [J]. T. Mater. Heat Treat., 2017, 38(2): 91
[5] (吴章汉, 胡守天, 郭 悦等. 退火条件对取向硅钢脱碳效果的影响 [J]. 材料热处理学报, 2017, 38(2): 91)
[6] Marra K M, Alvarenga E D A, Buono V T L. Decarburization Kinetics during Annealing of a Semi-processed Electrical Steel [J]. ISIJ Int., 2004, 44(3): 618
[7] Stephenson E T. The effects of decarburization annealing on the microstructure and magnetic properties of semiprocessed motor lamination steels [J]. J. Mater. Eng., 1990, 12(1): 69
[8] He L J. Rules and characteristics of decarburization annealing at two phase region for electrical steel [J]. Wuhan Iron Steel Corp. Technol., 1981(3): 58
[8] (何礼君. 电工钢两相区脱碳退火的规律及其特点 [J]. 武钢技术, 1981(3): 58)
[9] Oldani C R. Decarburization and grain growth kinetics during the annealing of electrical steels [J]. Scr. Mater., 1996, 35(11): 1253
[10] Marder A R, Perpetua S M, Kowalik J A, et al. The effect of carbon content on the kinetics of decarburization in Fe-C alloys [J]. Metall. Trans. A, 1985, 16(6): 1160
[11] Chen Y L, Qiu Y Q, Liu W N. Effect of carbon on heating temperature of slabs of high induction grain-oriented silicon steel [J]. J. Iron Steel Res., 1984, 4(2): 147
[11] (陈煜廉, 秋渝青, 刘文能. 碳对高磁感取向硅钢板加热温度的影响 [J]. 钢铁研究总院学报, 1984, 4(2): 147)
[12] Zhang Z J, Zang Z. Research on Silicon-Steel’s Decarbonizing Technique [J]. Sci.Technol. Info. Dev. Econ., 2004, 14(6): 162
[12] (张志杰, 臧 震. 硅钢脱碳工艺研究 [J]. 科技情报开发与经济, 2004, 14(6): 162)
[13] Liu G M, Liu J S, Liu X H, et al. Current Status and Future Prospectus of Production and Development of Electrical Sheet Steel [J]. Special Steel, 2005, 26(1): 38
[13] (刘光穆, 刘继申, 刘新和等. 电工钢的生产开发现状和发展趋势 [J]. 特殊钢, 2005, 26(1): 38)
[14] Ray S K, Mishra S, Mohanty O N. Magnetic Aging Characteristics of a Phosphorous Bearing Low Carbon Steel [J]. Scr. Metall. Mater., 1981, 15(9): 971
[15] Xu L F, Mao W M, Zhang X H. Influence of texture on magnetic aging of cold rolling non-oriented silicon steel sheets [J]. J. Funct. Mater., 2010, 41(12): 2144
[15] (许令峰, 毛卫民, 张晓辉. 晶粒取向对冷轧无取向硅钢磁时效的影响 [J]. 功能材料, 2010, 41(12): 2144)
[16] Michal G M, Slane J A. Carbide Precipitation in Electrical Steels [J]. JOM, 1986, 38(1): 32
[17] Ray S K, Monanty O N. On predicting the extent of magnetic aging in electrical steels [J]. J. Magn. Magn. Mater., 1989, 78(4): 255
[18] Marra K M,Alvarenga E A,Buono V T L. Magnetic aging anisotropy of a semi- processed non-oriented electrical steel [J]. Mater. Sci. Eng., A, 2005, 390 (1-2): 423
[19] Ushioda K, Hutchinson W B. Role of shear bands in annealing texture formation in 3% Si-Fe (111)[112] single crystals [J]. ISIJ Int., 1989, 29(10): 862
[20] Hayakawa Y, Szpunar J A. A new model of Goss texture development during secondary recrystallization of electrical steel [J]. Acta Mater., 1997, 45(11): 4713
[21] Hayakawa Y, Muraki M. The changes of Grain Boundary Character Distribution During the Secondary Recrystallization of Electrical Steel [J]. Acta Mater.,1998, 46(3): 1063
[22] Yang S Z. The Study of Decarburization Process in the Oriented Silicon Steel Production [D]. Wuhan: Wuhan Univ. Sci.Technol., 2016
[22] (杨守洲. 取向硅钢脱碳研究 [D]. 武汉: 武汉科技大学, 2016)
[23] Li Z C, Yang P, Cui F E, et al. Analysis on the secondary recrystallization in grain oriented silicon steel [J]. J. Chin. Electron Microsc. Soc., 2010, 29(1): 48
[23] (李志超, 杨 平, 崔凤娥等. 取向硅钢二次再结晶行为分析 [J]. 电子显微学报, 2010, 29(1): 48)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!