Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (3): 199-208    DOI: 10.11901/1005.3093.2018.483
Current Issue | Archive | Adv Search |
Effect of (Gd, Y) Containing-phases on Local Corrosion of Aged GW103K Alloy
Shuang YU1,2,Ruiling JIA1(),Han ZHANG1,2,Wei ZHANG2,Feng GUO1
1. School of Materials Science and Engineering, Inner Mongolia University of Technology, Key Laboratory of Film and Coating in Inner Mongolia, Hohhot 010051,China
2. Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016,China
Cite this article: 

Shuang YU,Ruiling JIA,Han ZHANG,Wei ZHANG,Feng GUO. Effect of (Gd, Y) Containing-phases on Local Corrosion of Aged GW103K Alloy. Chinese Journal of Materials Research, 2019, 33(3): 199-208.

Download:  HTML  PDF(16195KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The cast Mg-10Gd-3Y-0.4Zr (GW103K) alloy was solution treated at 500oC for 4 h and then aged at 225℃ for 193 h. The microstructure and corrosion performance in NaCl solution of the alloy were assessed by means of scanning electron microscope (SEM), transmission electron microscope (TEM), immersion test and scanning Kelvin probe atomic force microscope (SKPFM). The results show that the alloy shows a microstructure composed of α-Mg matrix with bulk-like Mg2(Gd, Y) phase and chain-like structure of alternatively arranged phases of (Gd,Y) solid solution and Mg2(Gd, Y), while the later two phases distributed in grains and/or at grain boundaries. The free corrosion potentials of the two phases (Gd, Y) solid solution and bulk-like Mg2(Gd, Y) are nobler than that of the α-Mg matrix, thereby the micro-galvanic coupling could form between the former phases with the α-Mg matrix. The (Gd, Y) solid solution and bulk-like Mg2(Gd, Y) acted as micro-cathodes to promote the corrosion of the surrounding matrix. It is worthy noted that even though the relative potential difference between the (Gd, Y) solid solution and the α-Mg matrix is greater, however, the interface between the (Gd, Y) solid solution and α-Mg matrix is coherent and the interfacial energy of the two phases is lower, thus they may exhibit better chemical compatibility, as a result, the (Gd, Y) solid solution phase may have little influence on the matrix corrosion.

Key words:  metallic materials      Mg alloy      corrosion micro-galvanic      SKPFM      (Gd,Y) phase      relative potential     
Received:  31 July 2018     
ZTFLH:  TG430.40  
Fund: Natural Science Foundation of Inner Mongolia(2016MS0538);Science and Technology Service Network Initiative Program Supporting Project(2016T3030)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.483     OR     https://www.cjmr.org/EN/Y2019/V33/I3/199

Fig.1  SEM morphologies of GW103K alloy after ageing 193 h
Fig.2  Bright field image of TEM and the SAED pattern (inset) (a), amplified clear bright field image (b), EDS results of bulk-like phase (c), the corresponding Fourier transform (FT) patterns (d), the ring indicates the mask location used for inverse FFT and processed image after inverse FFT corresponding to (b) for bulk-like phase of GW103K after ageing 193 h
Fig.3  Bright field image of chain-like structure (a), bright field image and the SAED pattern (inset) of bulk-like phase mark in (a) of ‘1’ (b), bright field image and the SAED pattern (inset) of bulk-like phase mark in (a) of ‘2’ (c), bright field image and the SAED pattern (inset) of bulk-like phase mark in (a) of ‘3’ (d), bright field image (e) of bulk-like phase mark in (d),the corresponding Fourier transform (FT) patterns (f), the ring indicates the mask location used for inverse FFT and processed image after inverse FFT corresponding to (e), EDS results (g) of bulk-like phase in (c) and EDS results (h) of bulk-like phase in (d) for GW103K alloy after ageing 193 h
Fig.4  HAADF-STEM morphologies of GW103K alloy after ageing 193 h (a) Morphology image of bulk-like Mg2(Gd, Y) phase before immersion; (b) Corrosion morphology of bulk-like Mg2(Gd, Y) phase after immersion in 1 mol/L NaCl solution for 15 min
Fig.5  The corrosion morphologies of GW103K alloy aged 193 h after immersion in 3.5% NaCl solution (a) Corrosion morphology of GW103K alloy aged 193 h after immersion for 2 h; (b) Corrosion morphology of chain-like structure at grain boundary after immersion for 30 min; (c) Corrosion morphology of chain-like structure at grain boundary after immersion for 2 h; (d) Corrosion morphology of chain-like structure in grain within after immersion for 2 h
Fig.6  AFM surface topography (a), three-dimensional potential map (b) and the line-profile analysis (c), (d) corresponding shown in (b) for bulk-like Mg2(Gd, Y) phase in GW103K alloy after ageing 193 h
Fig.7  AFM surface topography (a), three-dimensional potential map (b) and the line-profile analysis (c), (d) corresponding shown in (a) for chain-like structure in GW103K alloy after ageing 193 h
[1] WangZ W, ZhangZ M, ZhangX. Magnesium Alloy Application and Its Plastic Forming Technology [J]. J. Nor. China Inst. Technol., 2005, 26(1): 70
[1] (王智文, 张治民, 张 星. 镁合金的应用现状及其塑性成形技术 [J]. 华北工学院学报, 2005, 26(1): 70)
[2] LiuX W, LiuY, JinB, et al. Microstructure Evolution and Mechanical Properties of a SMATed Mg Alloy under In Situ SEM Tensile Testing [J]. J. Mater. Sci. Technol., 2017, 33: 224
[3] AghionE, BronfinB. Magnesium Alloys Development towards the 21~(st) Century[J]. Mater. Sci. Forum., 2000(0): 19
[4] ZhangD F, ZhanX, PanF S, et al. Research status of effect of rare earth element on mechanical properties of magnesium alloys [J]. J. Funct. Mater., 2014, 45(5): 05001
[4] (张丁非, 谌 夏, 潘复生等. 稀土元素对镁合金力学性能影响的研究进展 [J]. 功能材料, 2014, 45(5): 05001)
[5] SatetR L, HoffmannM J. Influence of the rare-earth element on the mechanical properties of RE-Mg-bearing silicon nitride [J]. J. the Am. Ceram. Soc., 2005, 88(9): 2485
[6] NodooshanH R J, WuG, LiuW, et al. Effect of Gd content on high temperature mechanical properties of Mg-Gd-Y-Zr alloy [J]. Mater. Sci. Eng. A, 2016, 651: 840
[7] YangQ, XiaoB L, WangD, et al. Formation of long-period stacking ordered phase only within grains in Mg-Gd-Y-Zn-Zr casting by friction stir processing [J]. J. Alloys Compd., 2013, 581: 585
[8] ZongX M, WangD, LiuW, et al. Effect of precipitated phases on corrosion of Mg95.8Gd3Zn1Zr0.2 alloy with long-period stacking ordered structure[J]. Acta Metall. Sin-Engl., 2016, 29(1): 32
[9] ZhangJ Z, MaZ X, LiD F. Influence of heat treatment on mechanical properties and microstructure of Mg-Gd-Y-Zr alloy [J]. Mater. Heat Treat., 2007, 36(18): 73
[9] (张家振, 马志新, 李德富. 热处理对Mg-Gd-Y-Zr合金组织和力学性能的影响 [J]. 材料热处理, 2007, 36(18): 73)
[10] LiangS Q, GuanD K, ChenL, et al. Precipitation and its effect on age-hardening behavior of as-cast Mg-Gd-Y alloy [J]. Mater. Des., 2011, 32: 361
[11] LiuX B, ChenR S, HanE H. Effects of ageing treatment on microstructures and properties of Mg-Gd-Y-Zr alloys with and without Zn additions [J]. J. Alloys Compd., 2008, 465: 232
[12] GuoQ Y, SunJ, MaoP L, et al. Analysis on precipitated phases in Mg-Gd-Y(Zr) alloy subjected to aging treatment [J]. J. Shenyang Univ. Technol., 2013, 35(5): 530
[12] (郭全英, 孙 晶, 毛萍莉等. Mg-Gd-Y(Zr)合金时效析出相分析 [J]. 沈阳工业大学学报, 2013, 35(5): 530)
[13] WangQ L, WuG H, HouZ Q, et al. Elevated aging behavior of Mg-Gd-Y-Zr alloy [J]. Specl. Casting Nonfer. Alloys, 2009, 29 (11): 1053
[13] (王其龙, 吴国华, 侯正全等. Mg-Gd-Y-Zr合金的高温时效行为研究 [J].特种铸造及有色合金, 2009, 29(11): 1053)
[14] ZhouJ, FengZ Y, ZhangJ L, et al. Effect of Nd addition on corrosion resistance of AM60 magnesium alloy [J]. J. Chin. Soc. Corr. Pro., 2014, 34(2): 185
[14] (周 京, 冯芝勇, 张金玲等. 稀土Nd含量对AM60镁合金耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2014, 34(2): 185)
[15] PengL M, ChangJ W, GuoX W, et al. Influence of heat treatment and microstructure on the corrosion of magnesium alloy Mg-10Gd-3Y-0.4Zr [J]. J. Appl. Electrochem., 2009, 39: 913
[16] LiangS Q, GuanD K, TanX P. The relation between heat treatment and corrosion behavior of Mg-Gd-Y-Zr alloy [J]. Mater. Des., 2011, 32: 1194
[17] SongY W, ShanD Y, HanE H. Pitting corrosion of a Rare Earth Mg alloy GW93 [J]. J. Mater. Sci. Technol., 2017, 33: 954
[18] LiuJ H, SongY W, ChenJ C, et al. The special role of anodic second phases in the micro-galvanic corrosion of EW75 Mg alloy [J]. Electrochim. Acta, 2016, 189: 190.
[19] SongY W, ShanD Y, ChenR S,et al.Effect of second phases on the corrosion behaviour of wrought Mg-Zn-Y-Zr alloy [J]. Corros. Sci., 2010, 52: 1830
[20] YuS, JiaR L, ZhangT, et al. Effect of different scale precipitates on corrosion behavior of Mg-10Gd-3Y-0.4Zr alloy [J]. Acta Metall. Sin-Engl., 2018, DOI: 10.1007/s40195-018-0792-7180288.
[21] YuY N. Principles of Metallography [M]. Beijing: Metallurgy Industry Press, 2013: 387
[21] (余永宁. 金属学原理 [M]. 北京: 冶金工业出版社, 2013: 387)
[22] GuX. Phase-field Dislocation Model of Mistif Dislocation in STO/Si Semi-coherent Interface and Dislocation Transmitting Across Al/Pd Coherent Interface[D]. Shanghai: Shanghai jiao tong University, 2015.
[22] (顾 骁. STO/Si半共格界面失配位错和位错穿越Al/Pd共格界面行为的相场位错模型 [D]. 上海: 上海交通大学, 2015)
[23] SongM, XiaoD H, HuangB Y. Interaction between semi-coherent Ω precipitates and dislocations in Al-Cu-Mg-Ag alloy [J]. J. Beijing Univ. Technol., 2008, 34(10): 1093
[23] (宋 旼, 肖代洪, 黄伯云. Al-Cu-Mg-Ag合金中半共格Ω析出相与位错的交互作用 [J]. 北京工业大学学报, 2008, 34(10): 1093)
[24] YongQ L, LiuQ Y, LiuS, et al. Theoretical calculation for specific interfacial energy of semiCoherent interface between MnS and austenite [J]. Special Steel, 2004, 25(6): 16
[24] (雍岐龙, 刘清友, 刘 苏等. 硫化锰与奥氏体之间半共格界面比界面能的理论计算 [J]. 特殊钢, 2004, 25(6): 16)
[25] HeS M, ZengX Q, PengL M, et al. Microstructure, mechanical properties, creep and corrosion resistance of Mg-Gd-Y-Zr(-Ca) Alloys [J]. Prog. Light Metals Aerospace Mater. Superconductors, 2007, 546: 101
[26] ChenY, ZhangL, ZhuJ J, et al. Phase interfaces between AlTiN and WC/Mo2C in WC-Mo2C substrate and the related characteristics [J]. Int. J. Refract. Met. Hard Mater., 2018, 72: 323
[27] ArrabalR., PardoA., MerinoM.C., et al. Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5 wt.% NaCl solution [J]. Corros. Sci., 2012, 55 (2): 301
[28] EsfahaniZ, RahimiE, SarvghadM, et al. Correlation between the histogram and power spectral density analysis of AFM and SKPFM images in an AA7023/AA5083 FSW joint [J]. J. Alloys Compd., 2018, 744: 174
[29] CoyA E, ViejoF, SkeldonP, et al. Susceptibility of rare-earth-magnesium alloys to micro-galvanic corrosion [J]. Corros. Sci., 2010, 52(12): 3896
[30] BuzolinaR. H., MohedanoM., MendisC. L., et al. As cast microstructures on the mechanical and corrosion behaviour of ZK40 modified with Gd and Nd additions, Mater. Sci Eng., A, 2017, 682: 238
[31] JiD P, WangS Q. Study of surface energy and work function of HEX metals by First-Principles calculation [J]. Acta Metall. Sin., 2015, 51(5): 597
[31] (姬德朋, 王绍青. 第一原理方法研究六方晶系金属表面功函数和表面能 [J]. 金属学报, 2015, 51(5): 597)
[32] LiuG L. Electronic structure and corrosion character of Mg alloys [J]. Acta Phys. Sin., 2010, 59(4): 2708
[32] (刘贵立. 镁合金电子结构与腐蚀特性研究 [J]. 物理学报, 2010, 59(4): 2708)
[33] ZhangG Y, ZhangH, LiuY X, et al. Electronic theory study on the mechanism of stress corrosion in magnesium alloy [J]. China Foundry Machinery Technol., 2007(4): 13
[33] (张国英, 张 辉, 刘艳侠等. 镁合金应力腐蚀机理电子理论研究 [J]. 中国铸造装备与技术, 2007(4): 13)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!