Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (2): 131-137    DOI: 10.11901/1005.3093.2018.372
Current Issue | Archive | Adv Search |
Preparation and Properties of Base Metal Ni Electrode
Qian LUO1,Chaobin JIANG1,Wanxiong HUANG3,Ciyu LIU1,Hang YAN1,Yong CHEN1(),Bo YE1,2()
1. School of Physics and Electronic Science, Hubei University, Laboratory of Ferro & Piezoelectric Materials and Devices of Hubei Province, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei University, Wuhan 430062, China
2. School of Computer Science and Information Engineering, Hubei University, Wuhan 430062, China
3. Yi-Peng Optoelectronic Polytron Technologies Inc., Wuhan 430000, China
Cite this article: 

Qian LUO,Chaobin JIANG,Wanxiong HUANG,Ciyu LIU,Hang YAN,Yong CHEN,Bo YE. Preparation and Properties of Base Metal Ni Electrode. Chinese Journal of Materials Research, 2019, 33(2): 131-137.

Download:  HTML  PDF(4479KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nickel electrode paste was prepared with powders of Ni, B and glass as raw material and rosin containing terpineol as organic binder. Two formulae of 70%, 15% and 15% as well as 68%, 16% and 16% of Ni, B and glass (mass fraction) respectively were adopted, which were applied on PTC semiconductor porcelain and then fired in air at 790~870oC with varying processing parameters to produce Ni electrodes. The prepared electrodes were characterized by means of SEM with EDX. The room temperature resistance and square resistance of the electrode were measured by multimeter and RTS-8 four-probe tester respectively. Results show that after fired at 810~850oC for 20 min, the prepared Ni electrodes on PTC semiconductor porcelain and other ceramics present excellent compatibility with substrates and good electrical properties. With the increasing fire temperature, the resistance and square resistance of the electrode decrease first and then increase, however both of them are the lowest for the electrode fired at 820oC.

Key words:  metallic materials      Ni electrode paste      ohmic contact      diffusion      base metal     
Received:  06 June 2018     
ZTFLH:  TN304  
Fund: Supported by the 3551 Optics Valley Talent Program of Wuhan(2016114);Opening Fund of Key Labora-tory of Green Preparation and Application for Functional Materials(201709)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.372     OR     https://www.cjmr.org/EN/Y2019/V33/I2/131

FormationCompositionFunction
Conductive phaseNi powderMetal powder
Binder phaseGlass powderRegulating the adhesion of electrode
Organic vehicleRosin-terpineolAdjusting the thixotropy and rheology of the paste
Functional phaseB powderImproving the oxidation resistance of electrode
Table 1  Composition and function of Ni electrode paste
SampleRatio (%, mass fraction)
Ni powderB powderGlass powder
a701515
b681616
Table 2  Formula of Ni electrode slurry
Fig.1  Preparation process of Ni electrode slurry
Fig.2  Temperature curve of Ni electrode sample sintering process
Fig.3  Relationship between the square resistance of two groups of Ni electrodes and the sintering temperature
Fig.4  Relationship between body resistance and sintering temperature of two sets of Ni electrode samples
Fig.5  Cross section morphologies of Ni electrode samples at different sintering temperatures (a) 810℃, (b) 830℃, (c) 850℃, (d) 870℃
Fig.6  Variation of element concentration with scanning position at different sintering temperatures of electrode samples (a) 810℃, (b) 830℃, (c) 850℃, (d) 870℃
Fig.7  Change of element concentration at different scanning positions with sintering temperature (a) -25 μm, (b) 25 μm
[1] Zhou D X, Chen Y, Deng C Y, et al. Study on the paste for Ni electrodes prepared by sintering in atmosphere [J]. Electr. Comp. Mater., 2003, 22(8): 10
[1] (周东祥, 陈 勇, 邓传益等. 空气中烧成镍电极浆料的研究 [J]. 电子元件与材料, 2003, 22(8): 10)
[2] Chen Y, Guo L, Zhou T S, et al. The study of Ni electrode paste sintered in the atmosphere [J]. Piezoelectr. Acoustoopt., 2005, 27: 85
[2] (陈 勇, 郭 琳, 周桃生等. 欧姆接触镍电极的研究 [J]. 压电与声光, 2005, 27: 85
[3] Zeng Y, Wang H Y. Research and analysis of end TiN layer extension of Ni electrode MLCC after plating [J]. Electr. Process Technol., 2016, 37: 196
[3] (曾 雨, 王海洋. Ni电极MLCC电镀后端头锡层延伸问题研究分析 [J]. 电子工艺技术, 2016, 37: 196
[4] Zhou D X, Gong S P. PTC Material and Application [M]. Wuhan: Huazhong University of Science and Technology Press, 1989
[4] (周东祥, 龚树萍. PTC材料及应用 [M]. 武汉: 华中理工大学出版社, 1989
[5] Masuda Y, Koumura T, Okawa T, et al. Micropatterning of Ni particles on a BaTiO3 green sheet using a self-assembled monolayer [J]. J. Colloid Interface Sci., 2003, 263: 190
[6] Li Y L, Feng N X. Study on boron oxide coated electrode [J]. Carbon Tech., 2004, 23(2): 19
[6] (李艳丽, 冯乃祥. 氧化硼作为电极涂层的研究 [J]. 炭素技术, 2004, 23(2): 19)
[7] Wang X D, Fan Z S, Sun D B, et al. Densification process of Ni electrodes in ceramic capacitors [J]. Chin. J. Nonferrous Met., 2005, 15: 1998
[7] (王旭东, 樊自拴, 孙冬柏等. 陶瓷电容器镍电极的致密化过程 [J]. 中国有色金属学报, 2005, 15: 1998
[8] Zhang S G, Meng S Y, Fu Y M. Study of quality and performance of Ni-inner paste of B MLCC [J]. Electr. Process Technol., 2010, 31: 177
[8] (张韶鸽, 孟淑媛, 付衣梅. B料MLCC镍内电极浆料质量性能研究 [J]. 电子工艺技术, 2010, 31: 177
[9] Sun W T. Conduction mechanism of electronic thick film material of base metal [J]. Electr. Comp. Mater., 1997, 16(3): 14
[9] (孙文通. 贱金属电子浆料导电机理研究 [J]. 电子元件与材料, 1997, 16(3): 14)
[10] Wang X H, Chen R Z, Zhou H, et al. Dielectric properties of BaTiO3 based ceramics sintered in reducing atmospheres prepared from nano-powders [J]. Ceram. Int., 2004, 30: 1895
[11] Luo X Q, Deng C Y. The study of ohm attachment Zn electrode [J]. J. Funct. Mater., 1999, 30: 74
[11] (罗小巧, 邓传益. 欧姆接触锌电极的研制 [J]. 功能材料, 1999, 30: 74
[12] Zhu R. Study on the characteristics of Ni electrode paste and the applications in multilayer PTCR [D]. Wuhan: Huazhong University of Science and Technology, 2011
[12] (祝 蓉. Ni电极浆料性能的研究及在叠层片式PTCR中的应用 [D]. 武汉: 华中科技大学, 2011)
[13] Zuo R Z, Li L T, Gui Z L. Influence of silver migration on dielectric properties and reliability of relaxor based MLCCs [J]. Ceram. Int., 2000, 26: 673
[14] Mi N, Zhao L, Liu M C. NiO electrode synthesized via sol-gel method and super-capacitive performance [J]. Chin. J. Mater. Res., 2017, 31: 714
[14] (弥 宁, 赵 磊, 刘卯成. NiO电极材料的溶胶凝胶法合成及其超级电容的性能 [J]. 材料研究学报, 2017, 31: 714
[15] Fu M, Cheng S G, Wang Y, et al. Effects of Te-Bi glass frit on performances of front silver contacts for crystalline silicon solar cells [J]. J. Inorg. Mater., 2016, 31: 785
[15] (付 明, 程思国, 王 玥等. Te-Bi玻璃对晶体硅太阳能电池正银电极性能的影响 [J]. 无机材料学报, 2016, 31: 785
[16] Wang Y L, Li L T, Qi J Q, et al. Nickel diffusion in base metal electrode MLCCs [J]. Mater. Sci. Eng., 2003, 99B: 378
[17] Zhang H B, Jiang S L, Zhang Y Y, et al. Fabrication and characterization of Pt electrode deposited by screen printing [J]. Chin. J. Mater. Res., 2008, 22: 479
[17] 张海波, 姜胜林, 张洋洋等. 用丝网印刷法制备Pt电极及其性能 [J]. 材料研究学报, 2008, 22: 479
[18] Deng A H. Atomic diffusion in nonferrous metals [J]. Shanghai Nonferrous Met., 1999, 20: 36
[18] 邓安华. 有色金属中的原子扩散 [J]. 上海有色金属, 1999, 20: 36
[19] Xiong J G, Xiong Y, He D H, et al. Temperature field and atom diffusion in spark plasma sintering [J]. J. Wuhan Univ. Technol., 2008, 30(12): 11
[19] (熊家国, 熊 焰, 何代华等. 放电等离子烧结过程温度场及原子扩散 [J]. 武汉理工大学学报, 2008, 30(12): 11)
[20] Zhang X M, Yang L H, Wu Y Q, et al. A method of accelerating molecular dynamics simulation for atomic diffusion in metallic interface [J]. Acta Phys. Sin., 2008, 57: 2392
[20] (张先明, 杨立红, 吴永全等. 一种描述金属界面原子扩散的加速分子动力学方法 [J]. 物理学报, 2008, 57: 2392
[21] Yang C Z, Zhong F M. Diffusion of elements and formation of Interme-Tallic phase at the interface of the binary diffusion couples [J]. Acta Phys. Sin., 1989, 38: 1354
[21] (杨传铮, 钟福民. 二元扩散偶界面的元素扩散和金属间相的形成 [J]. 物理学报, 1989, 38: 1354
[22] Wu J, Zhang Y F, Jin X Y, et al. Diffusion coefficient and spectroscopy analysis during plasma electrolytic carburizing on T8 carbon steel [J]. Chin. J. Mater. Res., 2016, 30: 655
[22] (吴 杰, 张亦凡, 金小越等. T8钢液相等离子体电解渗碳的扩散过程和光谱学分析 [J]. 材料研究学报, 2016, 30: 655
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!