Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (4): 291-298    DOI: 10.11901/1005.3093.2018.297
Current Issue | Archive | Adv Search |
Effect of Cooling Rate on Microstructure Evolution and Mechanical Property of Cast Al-20% Si Alloy
Jun JIANG1,Shixin HUANG1,Liandeng WANG2,Sibin ZHANG1,Dingyi ZHU1()
1. School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
2. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
Cite this article: 

Jun JIANG,Shixin HUANG,Liandeng WANG,Sibin ZHANG,Dingyi ZHU. Effect of Cooling Rate on Microstructure Evolution and Mechanical Property of Cast Al-20% Si Alloy. Chinese Journal of Materials Research, 2019, 33(4): 291-298.

Download:  HTML  PDF(18147KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of cooling rate, undercooling degree and recalescence temperature on the morphology of the primary Si-phase and the mechanical property of Al-20%Si alloy were investigated by means of high-precision thermometer, optical microscope (OM) and scanning electron microscopy (SEM). The results showed that the average size (D) of the primary Si in Al-20%Si alloy is a power function of the cooling rate (v) as D=260.6v-3/4, and linearly related to the recalescence temperature (Tm) as D=0.25Tm-143.12; Reducing the recalescence temperature of the primary Si growth was the key to control the grain growth, the copper mold with high thermal storage coefficient may be favourable to the sustainable reduction of the nucleation temperature and recalescence temperature of the primary Si, so that the primary Si size was small; The critical supercooling degree of 70 K was needed for the transformation of the primary Si growth from facet-like to non-facet-like ones, which is consistent with the theoretical calculation (74 K). With the increase of cooling rate and the undercooling degree, while the decrease of recalescence temperature, the solidified microstructure of Al-20%Si alloy was refined remarkably, correspondingly, the tensile strength of the Al-20%Si alloy increased from 167 MPa to 210 MPa and the elongation increased from 2.14% to 3.89 % respectively.

Key words:  metallic materials      Al-20%Si alloy      cooling rate      faihui temperature      morphology of Si phase      mechanical properties     
Received:  27 April 2018     
ZTFLH:  TG146  
Fund: Major International Joint Research Program of China(2015DFA71350)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.297     OR     https://www.cjmr.org/EN/Y2019/V33/I4/291

Fig.1  Casting mold schematic 1. mold thickness control board,2. mold sidewall, 3. mold bottom wall, 4. thermocouple
Fig.2  Solidification microstructure of Al-20%Si alloy (a~d) cooling in the steel mold; Figure (e~h) cooling in the copper mold (a, e) 20 mm-thick casting; (b, f) 15 mm-thick casting; (c, g) 10 mm-thick casting; (d, h) 5 mm-thick casting
Fig.3  Cooling curve of castings for steel mold cooling alloys
Fig.4  Cooling curve of castings for copper mold cooling alloys
Casting thickness of steel mold/mm

Cooling rate

/℃·s-1

Faihui temperature

/℃

Undercooling

/K

Average size of primary Si/μm
2018.37072933.5
1524.56883822.8
1038.16655217.6
573.26367012.2
Table 1  Relationship between average size of primary Si and undercooling, faihui temperature, cooling rate for steel mold cooling alloys
Casting thickness of copper mold/mm

Cooling rate

/℃·s-1

Faihui temperature

/℃

Undercooling

/K

Average size of primary Si/μm
2033.86704318.3
15506565314.9
1082.66327510.6
5211.1606967.1
  
Fig.5  Relationship between average size of primary Si and faihui temperature
Fig.6  Relationship between average size of primary Si and cooling rate
Fig.7  Microstructure of primary Si phase after deep etching of Al-20%Si alloy Fig. (a~d) cooling in the steel mold; Fig. (e~h) cooling in the copper mold (a, e) 20 mm-thick casting; (b, f) 15 mm-thick casting; (c, g) 10 mm-thick casting; (d, h) 5 mm-thick casting
Fig.8  Relationship between tensile strength and elongation and the casting thickness of Al-20%Si alloy in different cooling medium
Fig.9  Al-20%Si alloy tensile fracture morphology Fig. (a~d) cooling in the steel mold; Fig. (e~h) cooling in the copper mold (a, e) 20 mm-thick casting; (b, f) 15 mm-thick casting; (c, g) 10 mm-thick casting; (d, h) 5 mm-thick casting
[1] ZhuH M. Application and development of key technologies for lightweight vehicle [J]. Applied Energy Technology, 2009, (2): 10
[1] (朱宏敏. 汽车轻量化关键技术的应用及发展 [J]. 应用能源技术, 2009(2): 10)
[2] HeardD W, DonaldsonI W, BishopD P. Metallurgical assessment of a hypereutectic aluminum-silicon P/M alloy [J]. Journal of Materials Processing Technology, 2009, 209(18): 5902
[3] WangA Q, ZhangL J, XieJ P. Effects of cerium and phosphorus on microstructures and properties of hypereutectic AI-21% Si alloy [J]. Journal of Rare Earths, 2013, 31(5): 522
[4] ZuoM, ZhaoD, TengX, et al. Effect of P and Sr complex modification on Si phase in hypereutectic Al-30Si alloys [J]. Materials&Design, 2013, 47(9): 857
[5] ShaM, WuS, ZhongG, et al. Variation of microstructure of RE-containing AlSi20Cu2Ni1RE0.6 alloy with different cobalt contents [J]. Journal of Alloys and Compounds, 2011, 509(2): 252
[6] YangZ R, PangS P, SunY, et al. Effect of modification and alloying on microstructure and wear properties of hypereutectic Al-20% Si alloys [J]. The Chinese Journal of Nonferrous Metals, 2013(05): 1217
[6] (杨子润, 庞绍平, 孙 瑜等. 变质及合金化对过共晶Al-20%Si合金组织及磨损性能的影响 [J]. 中国有色金属学报, 2013(5):1217)
[7] DangB, JianZ Y, ChangF E, et al. Effect of melt thermal treatment on the solidification behavior and structure of Al-25%Si alloy [J]. Sleep Medicine, 2015, 14: e232-e233
[8] SamuelA M, Garza-ElizondoG H, DotyH W, et al. Role of modification and melt thermal treatment processes on the microstructure and tensile properties of Al-Si alloys [J]. Materials & Design, 2015, 80: 99
[9] ZhaoZ S, ZhaoA M. Microstructures and formation mechanism of spray deposited high silicon aluminum alloy [J]. The Chinese Journal of Nonferrous Metals, 2000, 10(6): 815
[9] (甄子胜, 赵爱民. 喷射沉积高硅铝合金显微组织及形成机理 [J]. 中国有色金属学报, 2000, 10(6): 815)
[10] CuiC, SchulzA, SchimanskiK, et al. Spray forming of hypereutectic Al-Si alloys [J]. Journal of Materials Processing Technology, 2009, 209(11): 5220
[11] XieL C, PengC Q, WangR C, et al. Morphology and microstructure of rapidly solidified hypereutectic Al-Si alloy powder [J]. The Chinese Journal of Nonferrous Metals, 2014, 24(1): 130
[11] (解立川, 彭超群, 王日初等. 快速凝固过共晶铝硅合金粉末的形貌与显微组织 [J]. 中国有色金属学报, 2014, 24(1): 130)
[12] DedyaevaE V, AkopyanT K, PadalkoA G, et al. High-pressure phase transitions and structure of Al-20 at% Si hypereutectic alloy [J]. Inorganic Materials, 2016, 52(10): 1077
[13] WangR Y, LuW H, HoganL M. Growth morphology of primary silicon in cast Al-Si alloys and the mechanism of concentric growth [J]. Journal of Crystal Growth, 1999, 207(1): 43
[14] CahnJ W, HilligW B, SearsG W. The molecular mechanism of solidification [J]. Acta Metallurgica, 1964, 14(12): 1421
[15] JianZ, KuribayashiK, JieW, et al. Solid-liquid interface energy of silicon [J]. Acta Materialia, 2006, 54(12): 3227
[16] LideD R. CRC Handbook of Chemistry and Physics [M]. CRC Press, Inc, 1989
[17] JianZ, KuribayashiK, JieW. Critical undercoolings for the transition from the lateral to continuous growth in undercooled silicon and germanium [J]. Acta Materialia, 2004, 52(11): 3323
[18] JianZ, YangX, ChangF, et al. Solid-liquid interface energy between silicon crystal and silicon-aluminum melt [J]. Metallurgical & Materials Transactions A, 2010, 41(7): 1826
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
No Suggested Reading articles found!