Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (3): 209-217    DOI: 10.11901/1005.3093.2018.280
Current Issue | Archive | Adv Search |
Thermal Rearrangement of Acetate-functionalized Polyimides and Adsorption Properties for CO2
Yunhua LU1(),Guoyong XIAO1,Lin LI2,Yan DONG1,Haijun CHI1,Zhizhi HU1,Tonghua WANG2()
1. School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
2. State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
Cite this article: 

Yunhua LU,Guoyong XIAO,Lin LI,Yan DONG,Haijun CHI,Zhizhi HU,Tonghua WANG. Thermal Rearrangement of Acetate-functionalized Polyimides and Adsorption Properties for CO2. Chinese Journal of Materials Research, 2019, 33(3): 209-217.

Download:  HTML  PDF(4983KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Two kinds of diamines containing ortho-hydroxyl groups and bulky moiety, 3,3'-diamino-4,4'-dihydroxytetraphenylmethane (DDTPM) and 9,9-bis (3-amino-4-hydroxyphenyl) fluorene (BAHPF) were polymerized respectively with aromatic dianhydride 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) via a low-temperature solution polymerization, and next, two acetate-functionalized polyimides (PI) were prepared via chemical imidization, and thirdly, which were further thermally treated at 425oC in N2 atmosphere to obtain the thermally rearranged polymers. Then, the structure and property of the PIs and TR polymers were characterized by means of Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), differential scanning calorimeter (DSC), X-ray photoelectric spectroscopy (XPS), X-ray diffraction(XRD) and gas adsorption isotherms etc. The results show that the thermal rearrangement (TR) occured partially for both of the PI(DDTPM-6FDA) and PI(BAHPF-6FDA), and the PI containing two phenyl groups show a range of thermal rearrangement temperature broader than the PI containing fluorene moieties. They show high glass transitionn temperatures (Tg) and larger interplanar crystal spacing. After the thermal treatment at 425oC, the specific surface area of TR(DDTPM-6FDA) and TR(BAHPF-6FDA) are 198 and 582 m2/g, and their pore diameters are 0.42 and 0.44 nm, respectively. They are belong to microporous materials, and the adsorption capacity for CO2 of TR(BAHPF-6FDA) is higher than that of TR(DDTPM-6FDA).

Key words:  organic polymer materials      polyimides      thermally rearranged polymers      acetate-func-tional      CO2 adsorption     
Received:  18 April 2018     
ZTFLH:  TB 324  
Fund: Supported by National Natural Science Foundation of China(21878033);Supported by National Natural Science Foundation of China(21506020);Supported by National Natural Science Foundation of China(21406102);Supported by National Natural Science Foundation of China(21676044);Natural Science Foundation of Liaoning Province(20180550439);Program for Liaoning Excellent Talents in University(LJQ2015053)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.280     OR     https://www.cjmr.org/EN/Y2019/V33/I3/209

Fig.1  Synthesis of 3,3’-diamino-4,4’-dihydroxytetraphenylmethane
Fig. 2  Preparation of thermally arranged polymers
Fig.3  FTIR spectra of dihydroxyl compound, dinitro compound and diamine
Fig. 4  1H NMR spectra of dihydroxyl compound, dinitro compound and diamine
Fig.5  FTIR spectra of acetate-functional PI and corresponding TR polymers
Fig.6  Thermogravimetric analysis curves of acetate-functional polyimides
Fig.7  DSC curves of two acetate-functional polyimides
Fig.8  XPS curves of thermally rearranged polymers
Fig.9  XRD curves of acetate-functional polyimides and thermal rearrangement polymers
Fig.10  SEM images of thermally rearrangement polymers (a)TR(DDTPM-6FDA), (b)TR(BAHPF-6FDA)
SamplesSolvents
NMPDMFDMAcDMSOTHFAcetone
PI(DDTPM-6FDA)++++--
TR(DDTPM-6FDA)------
PI(BAHPF-6FDA)++++--
TR(BAHPF-6FDA)------
Table 1  Solubility of acetate-functional polyimides and corresponding thermally rearranged polymers
Fig.11  N2 adsorption-desorption isotherms of thermally rearranged polymers
Fig.12  CO2 adsorption isotherms of thermally rearranged polymers
[1] LuoY, LiB, WangW, et al. Hypercrosslinked aromatic heterocyclic microporous polymers: a new class of highly selective CO2 capturing materials [J]. Adv. Mater., 2012, 24(42): 5703
[2] MckeownN B, BuddP M, BookD. Microporous polymers as potential hydrogen storage materials [J]. Macromol. Rapid. Comm., 2007, 28(9): 995
[3] KimS, LeeY M. Rigid and microporous polymers for gas separation membranes [J]. Prog. Polym. Sci., 2015, 43: 1
[4] KouJ, SunL. Fabrication of nitrogen-doped porous carbons for highly efficient CO2 capture: rational choice of a polymer precursor [J]. J. Mater. Chem. A, 2016, 4: 17299
[5] LiawD J, WangK L, HuangY C, et al. Advanced polyimide materials: synthesis, physical properties and applications [J]. Prog. Polym. Sci., 2012, 37: 907
[6] WeberJ, SuQ, AntoniettiM, et al. Exploring polymers of intrinsic microporosity-microporous, soluble polyamide and polyimide [J]. Macromol. Rapid. Comm., 2007, 28: 1871
[7] SwaidanR J, GhanemB, SwaidanR, et al. Pure- and mixed-gas propylene/propane permeation properties of spiro- and triptycene-based microporous polyimides [J]. J. Membr. Sci., 2015, 492: 116
[8] MaX, SalinasO, LitwillerE, et al. Novel spirobifluorene- and dibromospirobifluorene-based polyimides of intrinsic microporosity for gas separation applications [J]. Macromolecules, 2013, 46: 9618
[9] YanJ, ZhangB, and WangZ G. Ultramicroporous carbons derived from semi-cycloaliphatic polyimide with outstanding adsorption properties for H2, CO2, and organic vapors [J]. J. Phys. Chem. C, 2017, 121(41): 22753
[10] LiG Y, ZhangB, YanJ, et al. Microporous polyimides with functional groups for the adsorption of carbon dioxide and organic vapors [J]. J. Mater. Chem. A, 2016, 4, 11453
[11] ParkH B, JungC H, LeeY M, et al. Polymers with cavities tuned for fast selective transport of small molecules and ions [J]. Science, 2007, 318: 254
[12] SwaidaR J, MaX, PinnauI. Spirobisindane-based polyimide as efficient precursor of thermally-rearranged and carbon molecular sieve membranes for enhanced propylene/propane separation [J]. J. Membr. Sci., 2016, 520: 983
[13] XuY M, LeN L, ZuoJ, et al. Aromatic polyimide and crosslinked thermally rearranged poly(benzoxazole-co-imide) membranes for isopropanol dehydration via pervaporation [J]. J. Membr. Sci., 2016, 499: 317
[14] KimS, LeeY M. Rigid and microporous polymers for gas separation membranes [J]. Prog. Polym. Sci., 2015, 43: 1
[15] LuoS, LiuJ, LinH, et al. Preparation and gas transport properties of triptycene-containing polybenzoxazole (PBO)-based polymers derived from thermal rearrangement (TR) and thermal cyclodehydration (TC) processes [J]. J. Mater. Chem. A, 2016, 4: 17050
[16] LiuW, XieW. Acetate-functional thermally rearranged polyimides based on 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane and various dianhydrides for gas separations [J]. Ind. Eng. Chem. Res., 2013, 53(2): 871
[17] OngY K, WangH, ChungT S. A prospective study on the application of thermally rearranged acetate-containing polyimide membranes in dehydration of biofuels via pervaporation [J]. Chem. Eng. Sci., 2012, 79(37): 41
[18] BibianaC G, JoséG C, AntonioH, et al. Gas separation membranes made through thermal rearrangement of ortho-methoxypolyimides [J]. RSC Adv., 2015, 5: 102261
[19] LuY H, HaoJ C, LiL, et al. Preparation and gas transport properties of thermally induced rigid membranes of copolyimide containing cardo moieties [J]. React. Funct. Polym., 2017, 119: 134
[20] LuY H, HaoJ C, LiL, et al. Synthesis and gas separation properties of thermally induced rigid membranes [J]. Acta Polym. Sin., 2016, 8: 1145
[20] (鲁云华, 郝继璨, 李 琳等. 热致刚性膜材料的合成与气体分离性能研究 [J]. 高分子学报, 2016, 8: 1145)
[21] ParkH B, HanS H, JungC H, et al. Thermally rearranged (TR) polymer membranes for CO2 separation [J]. J. Membr. Sci., 2010, 359: 11
[22] LiG Y. Construction of microporous polymers and their adsorption properties of CO2 gas and organic vapors [D]. Dalian University of Technology, 2014
[22] (李桂洋. 微孔聚合物的构建及其二氧化碳与有机蒸气吸附性能研究 [D]. 大连理工大学, 2014)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[3] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[4] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[5] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] ZHANG Cuige, HU Liang, LU Zuxin, ZHOU Jiahui. Preparation and Emulsification Properties of Self-assembled Colloidal Particles Based on Alginic Acid[J]. 材料研究学报, 2021, 35(10): 761-768.
No Suggested Reading articles found!