|
|
Effect of Microstructure Heterogeneity on Intergranular Corrosion Susceptibility of Al-alloy 6005A |
Pengyang SHEN, Jianguo TANG( ), Lingying YE, Chengxiong DUAN, Yunlai DENG |
School of Materials Science and Engineering, Central South University, Changsha 410083, China |
|
Cite this article:
Pengyang SHEN, Jianguo TANG, Lingying YE, Chengxiong DUAN, Yunlai DENG. Effect of Microstructure Heterogeneity on Intergranular Corrosion Susceptibility of Al-alloy 6005A. Chinese Journal of Materials Research, 2018, 32(10): 751-758.
|
Abstract The effect of microstructure heterogeneity on the intergranular corrosion susceptibility of the extruded Al-alloy 6005A was investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and intergranular corrosion (IGC) test. Results show that the microstructure of the surface layer is quite different from that of the central portion of the Al-alloy profile. The surface layer is full of coarse grain bigger than 100 μm, coarse and scattered second phase particles and large angle (≥10°) grain boundaries, while the size of grains and second phase particles is much finer in the central portion, and many low angle grain boundaries can be observed this portion. The PCG (peripheral coarse grain) surface layer-reserved sample presents better IGC resistance than that of the PCG surface layer-removed sample, correspondingly the maximum depth of IGC was 37.08 μm for the former, while 459.28 μm for the later. The major cause why corrosion resistance of the surface layer LS superior to the central portion of the alloy may be ascribed to the less grain boundary and lower density of grain boundary precipitates of the surface layer.
|
Received: 30 November 2017
|
|
Fund: Supported by National Natural Science Foundation of China (No. 51474240) and Zhongshan Municipal Science and Technology Project (No. 2016A1001) |
[1] | Hirsch J, Al-Samman T.Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications[J]. Acta Materialia, 2013, 61(3): 818 | [2] | Sheng X F, Yang W C, XIA C D, et al.Effects of T6 and T6I6 ageing treatments on microstructure and properties of 6005A aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(05): 1276(盛晓菲, 杨文超, 夏承东等. T6时效和T6I6时效对6005A铝合金微观组织和性能的影响[J]. 中国有色金属学报, 2012, 22(05):1276) | [3] | Dai L F, Gong Q J, Cao X P, et al.Processing technology of 6005A extruded profiles of complex large sections[J]. Light Alloy Fabrication Technology, 2015, 43(12): 32(戴丽芳, 巩全军, 曹春鹏等. 复杂大断面6005A铝合金型材挤压生产工艺分析[J]. 轻合金加工技术, 2015, 43(12): 32) | [4] | Deng Y L, Wang Y F, Lin H Q, et al.Effect of Extrusion Temperature on Strength and Fracture Toughness of an Al-Zn-Mg Alloy[J]. Chinese Journal of Materials Research, 2016, 30(02): 87(邓运来, 王亚风, 林化强等. 挤压温度对Al-Zn-Mg合金力学性能的影响[J]. 材料研究学报, 2016, 30(02): 87) | [5] | Zhang X L, Xu X J, Ling Z Y, et al.Microstructure and Mechanical Properties of an Extruded Al-Alloy Al-10.78Zn-2.78Mg-2.59Cu-0.22Zr-0.047Sr[J]. Chinese Journal of Materials Research, 2015, 29(10): 729(张香丽, 许晓静, 凌智勇等. Al-10.78Zn-2.78Mg-2.59Cu-0.22Zr-0.047Sr铝合金挤压材的性能[J]. 材料研究学报, 2015, 29(10): 729) | [6] | Kaneko S, Murakami K, Sakai T.Effect of the extrusion conditions on microstructure evolution of the extruded Al-Mg-Si-Cu alloy rods[J]. Materials Science and Engineering: A, 2009, 500(1): 8 | [7] | Birol Y.Impact of partial recrystallization on the performance of 6005A tube extrusions[J]. Engineering Failure Analysis, 2010, 17(5): 1110 | [8] | Eivani A R, Zhou J, Duszczyk J.Mechanism of the formation of peripheral coarse grain structure in hot extrusion of Al-4.5Zn-1Mg[J]. Philosophical Magazine, 2016, 96(12): 1188 | [9] | Geertruyden W H V, Misiolek W Z, Wang P T. Surface grain structure development during indirect extrusion of 6xxx aluminum alloys[J]. Journal of Materials Science, 2005, 40(14): 3861 | [10] | Geertruyden W H V, Claves S R, Misiolek W Z. Electron backscatter diffraction analysis of microstructural evolution in hot-deformed 6xxx series aluminum alloys[J]. Metallurgical and Materials Transactions A, 2002, 33(3): 693 | [11] | Kikuchi S, Yamazaki H, Otsuka T.Peripheral-recrystallized structures formed in Al-Zn-Mg-Cu-Zr alloy materials during extrusion and their quenching sensitivity[J]. Journal of Materials Processing Technology, 1993, 38(4): 689 | [12] | Wang E H.The research in the peripheral coarse grain structure of the Д1 aluminum alloy[J]. Journal of Beijing University of Aeronautics and Astronautics, 1958, (02): 29(王恩鸿. 对压挤铝合金Д1产品形成粗晶环的研究[J]. 北京航空学院学报, 1958, (02): 29) | [13] | Liu Z W, Li L X, Zhang M, et al.Research progress of interface friction in hot extrusion of aluminium alloys[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(07): 1311(刘志文, 李落星, 张明等. 铝合金热挤压过程中界面摩擦的研究进展[J]. 中国有色金属学报,2017, 27(07): 1311) | [14] | Barnett M R, Kelly G L, Hodgson P D.Predicting the critical strain for dynamic recrystallization using the kinetics of static recrystallization[J]. Scripta Materialia, 2000, 43(4): 365 | [15] | Solhjoo S.Determination of critical strain for initiation of dynamic recrystallization[J]. Materials and Design, 2010, 31(3): 1360 | [16] | Zhang X M, Ke B, Tang J G, et al.Effects of Mn Content on Microstructure and Mechanical Properties of 6061 Aluminum Alloy[J]. Chinese Journal of Materials Research, 2013, 27(04): 337(张新明, 柯彬, 唐建国等. Mn含量对6061铝合金组织与力学性能的影响[J]. 材料研究学报,2013, 27(04): 337) | [17] | Wang Z X, Li H, Gu J H, et al.Effect of Cu content on microstructures and properties of Al-Mg-Si-Cu alloys[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(12): 3348(王芝秀, 李海, 顾建华等. Cu含量对Al-Mg-Si-Cu合金微观组织和性能的影响[J]. 中国有色金属学报, 2012, 22(12): 3348) | [18] | Svenningsen G, Larsen M H, Nordlien J H, et al.Effect of high temperature heat treatment on intergranular corrosion of AlMgSi(Cu) model alloy[J]. Corrosion Science, 2006, 48(1): 258 | [19] | Zeng F L, Wei Z L, Li J F, et al.Corrosion mechanism associated with Mg2Si and Si particles in Al-Mg-Si alloys[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(12): 2559 | [20] | Wang N, Liu Q, Zhang Y X, et al . Corrosion Property of Al-Alloy 6061-T6 Processed by Multi-pass Friction Stir Processing[J]. Chinese Journal of Materials Research, 2015, 29(08): 589(王淼, 刘强, 张亚雄等. 6061-T6铝合金多道搭接FSP腐蚀性能[J]. 材料研究学报, 2015, 29(08): 589) | [21] | Sheng X F, Yang W C, Wang M P, et al.Effect of artificial ageing on intergranular corrosion of 6005A Al alloy[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(08): 2174(盛晓菲, 杨文超, 汪明朴等. 人工时效对6005A铝合金晶间腐蚀性能的影响[J]. 中国有色金属学报, 2012, 22(08): 2174) | [22] | Svenningsen G, Lein J E, Bj?rgum A, et al.Effect of low copper content and heat treatment on intergranular corrosion of model AlMgSi alloys[J]. Corrosion Science, 2006, 48(1): 226 | [23] | Li H Z, Yao S C, Liang X P, et al.Grain boundary pre-precipitation and its contribution to enhancement of corrosion resistance of Al-Zn-Mg alloy[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(10): 2523 | [24] | Li K, Song M, Du Y, et al.Effect of Minor Cu Addition on the Precipitation Sequence of an As-Cast Al-Mg-Si 6005 Alloy[J]. Archives of Metallurgy & Materials, 2012, 57(2): 457 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|