Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (11): 827-833    DOI: 10.11901/1005.3093.2017.582
Orginal Article Current Issue | Archive | Adv Search |
Effect of Cr-Content on Microstructure of 12CrNi2 Alloy Steel Prepared by Laser Additive Manufacturing
Zhihong DONG1(), Hongwei KANG2, Yujiang XIE1, Changtai CHI1, Xiao PENG3
1 Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 College of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
3 School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
Cite this article: 

Zhihong DONG, Hongwei KANG, Yujiang XIE, Changtai CHI, Xiao PENG. Effect of Cr-Content on Microstructure of 12CrNi2 Alloy Steel Prepared by Laser Additive Manufacturing. Chinese Journal of Materials Research, 2018, 32(11): 827-833.

Download:  HTML  PDF(5278KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

12CrNi2 alloy steel has been prepared by means of laser additive manufacturing (LAM) using a commercial alloy steel powder. The results show that the LAMed alloy steel contains a large number of pores intrinsically associated with the reaction of O and C, which form gases in molten pool of the laser melting alloy steel powder. The pore formation can be highly suppressed by adding into the steel powder with small amounts of Cr, because it preferentially reacts with O to form Cr2O3 and consequently prevents the gases formation in the molten pool. The Cr2O3 formation also refines the ferrite and the austenite phases of the LAMed alloy steel and increases its hardness.

Key words:  metallic materials      microstructure      laser additive manufacturing      Cr content      alloy steel     
Received:  10 October 2017     
ZTFLH:  TG142.1  
Fund: Supported by the National Key Research and Development Program of China (No. 2016YFB1100203)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.582     OR     https://www.cjmr.org/EN/Y2018/V32/I11/827

C Ni Cr O Fe
0.085 2.42 0.55 0.53 Bal.
Table 1  Chemical compositions of 12CrNi2 alloy steel powder (%, mass fraction)
Fig.1  Schematic diagram of the LMD process
Fig.2  Surface (a) and cross sectional (b) morphologies of the as-received 12CrNi2 alloy steel particles
O Fe Cr Ni Si
Atomic fraction/% 59.09 37.12 0.3 0.38 3.11
Mass fraction/% 30.07 65.95 0.49 0.71 2.78
Table 2  Chemical compositions of the oxide layer on the as-received 12CrNi2 particles
Fig.3  SEM cross-sectional images of the LMDed 12CrNi2 alloy steel without (a) and with addition of 4% (b) Cr
Fig.4  ΔG0 of possible chemical reactions in the melted pool as a function of temperature
Fig.5  Backscattered electron image of the LMDed alloy steel
Fig.6  TEM image of a Cr-rich particle precipitated in the LMDed alloy steel and its selected area electron diffraction pattern and elemental mapping
Fig.7  OM image (a), BEI image (b) and corresponding C X-ray mapping (c) of the LMDed alloy steel, and selected area electron diffraction patterns of the main phase (d) and the island phase (e)
Fig.8  XRD patterns of the LMDed alloy steel with different Cr content
Fig.9  OM images of the LMDed alloy steel when Cr content increased by (a) 2%, (b) 3% and (c) 4%,the inset in (b) showing the C X-ray mapping
Fig.10  Microhardness of the LMDed alloy steel with different Cr content
[1] Murr L E, Gaytan S M, Ramirez D A, et al.Metal fabrication by additive manufacturing using laser and electron beam melting technologies[J]. J. Mater. Sci. Technol., 2012, 20: 1
[2] Popovich V A, Borisov E V, Popovich A A, et al.Functionally graded Inconel718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties[J]. Materials Design, 2017, 114: 441
[3] Elahinia M, Moghaddam N S, Andani M T, et al.Fabrication of NiTi through additive manufacturing: A review[J]. Prog. Mater. Sci., 2016, 83: 630
[4] Hagedorn Y.Laser additive manufacturing of ceramic components: Materials, processes, and mechanisms[J]. Laser Additive Manufacturing, 2017: 163
[5] Lin X, Huang W D.Laser additive manufacturing of high-performance metal components[J]. Science China: Information Sciences, 2015, 45: 1111(林鑫, 黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学: 信息科学, 2015, 45: 1111)
[6] Wang H M, Zhang S Q, Wang X M.Progress and challenges of laser Direct Manufacturing of large Titanium structural components[J]. Chinese Journal of Lasers, 2009, 36: 3204(王华明, 张述泉, 王向明. 大型钛合金结构件激光直接制造的进展与挑战[J]. 中国激光, 2009, 36: 3204)
[7] Yang Q, Lu Z L, Huang F X, et al.Research on status and development trend of laser additive manufacturing[J]. Aeron Manuf. Technol., 2012, 12: 26(杨强, 鲁中良, 黄福享等. 激光增材制造技术的研究现状及发展趋势[J]. 航空制造技术, 2012, 12: 26)
[8] Liu R, Wang Z, Sparks T, et al.Aerospace applications of laser additive manufacturing[J]. Laser Additive Manufacturing, 2017: 351
[9] Wu C F, Ma M X, Liu W J, et al.Laser cladding in-situ carbide particle reinforced Fe-based composite coatings with rare earth oxide addition[J]. Journal of Rare Earths, 2009, 27(6): 997
[10] Zhou C Y, Zhao S S, Wang Y B, et al.Mitigation of pores generation at overlapping zone during laser cladding[J]. J. Mater. Process. Technol., 2015, 216: 269
[11] Qi Y T, Cao R P, Li Z X.Forming character and mechanism of cracks for Fe-based alloy coatings by laser cladding[J]. Applied Laser, 2015, 35(6): 639(齐勇田, 曹润平, 栗卓新. 激光熔覆铁基合金涂层开裂行为及其产生机制[J]. 应用激光, 2015, 35(6): 639)
[12] Wang Y B, Zhao S S, Gao W Y, et al.Microstructure and properties of laser cladding FeCrBSi composite powder coatings with higher Cr content[J]. J. Mater. Process. Technol., 2014, 214: 899
[13] LePera F S. Improved etching technique to emphasize martensite and bainite in high-strength dual-phase steel[J]. JOM, 1980, 32: 38
[14] Girault E, Jacques P, Harlet Ph, et al.Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels[J]. Materials Characterization, 1998, 40: 111
[15] Cai X W, Chen X Y, Zhou Q, et al.Color metallographic quantitative analysis method of TRIP steel microstructure[J]. Heat Treatment of Metals, 2014, 39(12): 139(蔡晓文, 陈兴元, 周强等. TRIP钢彩色金相组织定量分析方法[J]. 金属热处理, 2014, 39(12): 139)
[16] Barin I.Thermochemical Data of Pure Substances[M]. Third Edition, 1989
[17] Yang Q M, Kang M K.Character of carbon depleted regions in undercooled austenite and thermodynamics of bainitic transformation[J]. Acta Metall. Sin., 1990, 26(4): A235(杨全民, 康沫狂. 奥氏体贫碳区性质与贝氏体相变热力学[J]. 金属学报, 1990, 26(4): A235)
[18] Qiao Z X, Liu Y C, Yu L M, et al.Formation mechanism of granular bainite in a 30CrNi3MoV steel[J]. J. Alloy. Compd., 2009, 475: 560
[19] Jiang Z H, Wang P, Li D Z, et al.effect of tempering temperature on the microstructure and mechanical properties of granular bainite in 2.25Cr-1Mo-0.25V steel[J]. Acta Metall. Sin., 2015, 51: 925(蒋中华, 王培, 李殿中等. 回火温度对2.25Cr-1Mo-0.25V钢粒状贝氏体显微组织和力学性能的影响[J]. 金属学报, 2015, 51: 925)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!