Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (4): 263-270    DOI: 10.11901/1005.3093.2017.437
ARTICLES Current Issue | Archive | Adv Search |
Effect of Laser Heat Treatment on Microstructure and Mechanical Property of 7075 Al-alloy
Tong LIU, Ruiming SU(), Yingdong QU, Junhua YOU, Yanhua BAI, Rongde LI
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
Cite this article: 

Tong LIU, Ruiming SU, Yingdong QU, Junhua YOU, Yanhua BAI, Rongde LI. Effect of Laser Heat Treatment on Microstructure and Mechanical Property of 7075 Al-alloy. Chinese Journal of Materials Research, 2018, 32(4): 263-270.

Download:  HTML  PDF(5811KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of laser heat treatment, in stead of the retrogression process within the traditional retrogression and re-aging (RRA) treatment, on the microstructure and mechanical property of 7075 Al-alloy was investigated. The results show that the laser heat treatment can effectively replace the regression process of RRA. The hardness of the resulted 7075 Al-alloy exhibits the aging feature with double peaks. After pre-aging, laser treatment (850 W, 2 mm/s) and re-aging, the hardness of 7075 Al-alloy reaches the value of the second peak-aged ones with the highest hardness of 181 HBW, which then presented oxidation-wear character during wear test. The second peak-aged alloy possesses higher hardness and much better tribological performance than the first peak-aged ones. Which may be ascribed to the large number of fine precipitates of η'- and η-phase within the laser treated 7075 Al-alloy.

Key words:  metallic materials      7075 aluminum alloy      laser heat treatment      microstructure      hardness      wear mechanism     
Received:  19 July 2017     
Fund: Supported by National Natural Science Foundation of China (No. 51574167), Doctoral Scientific Research Foundation of Liaoning Province (No. 20170520337), Program for Innovative Research Team in University of Liaoning Province (No. LT2015020) and Science and Technology Program of Liaoning Provincial Department of Education (No. LGD2016003)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.437     OR     https://www.cjmr.org/EN/Y2018/V32/I4/263

Cu Mn Mg Cr Zn Ti Al
1.60 0.29 2.86 0.21 6.0 0.17 Bal.
Table 1  Chemical composition of 7075 aluminum alloy (%, mass fraction)
Hot treatment Preaging Retrogression Reaging
Ageing with different power 600~900 W, 2 mm/s
Ageing with different scanning speed 120℃×16 h 850 W, 1~5 mm/s 120℃×16 h
Traditional RRA ageing 240℃×30 s
Table 2  Aging treatments of 7075 aluminum alloy
Fig.1  Average hardness after LRRA treatment with different scanning speed and RRA treatment
Fig.2  Average of hardness after LRRA treatment with different scanning speed and RRA treatment
Fig.3  Hardness distribution of laser treatment layers of 7075 aluminum
Fig.4  Wear mass of samples after LRRA treatment with different laser power and RRA treatment
Fig.5  Wear mass of samples after LRRA treatment with different scanning speed and RRA treatment
Fig.6  Morphology of worn surface of 7075 alloy after different heat treatments (a) LRRA(600 W); (b) LRRA(700 W); (c) LRRA(750 W); (d) LRRA(850 W); (e) LRRA(900 W); (f) LRRA(1 mm/s); (g) LRRA(5 mm/s); (h) RRA
Fig.7  X-ray diffraction patterns of 7075 aluminum alloy with different heat treatments
Fig.8  TEM images of 7075 alloy after different heat treatments (a) 600 W; (b) 850 W; (c) 900 W; (d) 1 mm/s; (e) 5 mm/s; (f) RRA
[1] Dong G J, Zhao C C, Peng Y X, et al.Hot granules medium pressure forming process of AA7075 conical parts[J]. Chin. J. Mech. Eng., 2015, 28: 580
[2] Su J X, Zou Y, Chen K M, et al.Corrosion mechanism and characteristic of 7075-T6 aluminum alloy panel on airline aircraft[J]. J. Mech. Eng., 2013, 49(8): 91(苏景新, 邹阳, 陈康敏等. 民航客机7075-T6铝合金壁板的腐蚀特征与机制[J]. 机械工程学报, 2013, 49(8): 91)
[3] Ning A L, Liu Z Y, Feng C, et al.Effect of different heat-treatment on the mechanical properties of 7A04 alloy with large cross section[J]. Chin. J. Mater. Res., 2007, 21: 511(宁爱林, 刘志义, 冯春等. 热处理对大截面7A04铝合金棒材力学性能的影响[J]. 材料研究学报, 2007, 21: 511)
[4] Qiao J S, Xia H, Xia T D, et al.Mechanical properties of extrusions of spray formed 7055 Al alloy[J]. Chin. J. Mater. Res., 2014, 28: 914(乔及森, 夏浩, 夏天东等. 喷射成形7055铝合金型材的力学性能[J]. 材料研究学报, 2014, 28: 914)
[5] Ning A L, Liu Z Y, Feng C, et al.Effect of retrogression time on mechanical properties of super-high strength Al alloy in RRA state[J]. Chin. J. Mater. Res., 2008, 22: 357(宁爱林, 刘志义, 冯春等. 回归时间对RRA处理超高强铝合金力学性能的影响[J]. 材料研究学报, 2008, 22: 357)
[6] Yang S J, Xie Y H, Zhu N, et al.Effect of zirconium on the mechanical properties of a super-high strength aluminum alloy[J]. Chin. J. Mater. Res., 2002, 16: 406(杨守杰, 谢优华, 朱娜等. Zr对Al-Zn-Mg-Cu系超高强铝合金力学性能的影响[J]. 材料研究学报, 2002, 16: 406)
[7] Yang L, Gao J, Tao X C, et al.Tensile and intergranular corrosion properties of Al-6Zn-2Mg-2Cu alloy after heat treatments[J]. J. Shenyang Univ. Technol., 2017, 39: 17(杨林, 高菁, 陶欣慈等. Al-6Zn-2Mg-2Cu合金热处理后的拉伸与晶间腐蚀性能[J]. 沈阳工业大学学报, 2017, 39: 17)
[8] Zhou H R, Yao W, Liu P Y, et al.Effect of cyclic condensation and sulfur dioxide on corrosion behavior of 7A04 aluminum alloy[J]. Chin. J. Mater. Res., 2017, 31: 359(周和荣, 姚望, 刘鹏洋等. 周期凝露和二氧化硫环境对7A04铝合金腐蚀行为的影响[J]. 材料研究学报, 2017, 31: 359)
[9] Ge L D, Wang S Q, Yang Z R.Wear behavior and its mechanism of 7075 aluminum alloy[J]. Spec. Cast. Nonferrous Alloy., 2011, 31: 178(葛灵丹, 王树奇, 杨子润. 7075铝合金的磨损行为及其机理探讨[J]. 特种铸造及有色合金, 2011, 31: 178)
[10] Rao R N, Das S, Mondal D P, et al.Effect of heat treatment on the sliding wear behaviour of aluminium alloy (Al-Zn-Mg) hard particle composite[J]. Tribol. Int., 2010, 43: 330
[11] Huang W J, Zhang G X, Zhang X B.Effect of aging on tribological performances of 7075 aluminium alloy[J]. Trans. Mater. Heat Treat., 2013, 34(11): 132(黄伟九, 张国鑫, 张小彬. 时效处理对7075铝合金摩擦学性能的影响[J]. 材料热处理学报, 2013, 34(11): 132)
[12] Zhang P, Zhai Y C, Wang Y Q.Friction, wear and surface quality of 7055 aluminum alloy under extreme conditions[J]. Tribology, 2016, 36: 254(张平, 翟彦春, 王优强. 极端环境下7055铝合金摩擦磨损及表面质量研究[J]. 摩擦学学报, 2016, 36: 254)
[13] Reda Y, Abdel-Karim R, Elmahallawi I.Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging[J]. Mater. Sci. Eng., 2008, 485A: 468
[14] Oliveira Jr A F, de Barros M C, Cardoso K R, et al. The effect of RRA on the strength and SCC resistance on AA7050 and AA7150 aluminium alloys[J]. Mater. Sci. Eng., 2004, 379A: 321
[15] Fang S F, Wang M P, Song M.An approach for the aging process optimization of Al-Zn-Mg-Cu series alloys[J]. Mater. Des., 2009, 30: 2460
[16] Wei X H, Tian N, Li N K, et al.Retrogression and re-aging heat treatment of Al-6.1Zn-2.6Mg-1.6Cu aluminum alloy[J]. J. Mater. Metall., 2007, 6: 138
[17] Huang L Y, Zhang X M, Liu S D, et al.Effect of retrogression stage on microstructure and mechanical property of 7055 alloy[J]. Hot Working Technol., 2012, 41(2): 178(黄乐瑜, 张新明, 刘胜胆等. 回归处理对7055铝合金组织和性能的影响[J]. 热加工工艺, 2012, 41(2): 178)
[18] Xiao Y P, Pan Q L, Li W B, et al.Influence of retrogression and re-aging treatment on corrosion behaviour of an Al-Zn-Mg-Cu alloy[J]. Mater. Des., 2011, 32: 2149
[19] Su R M, Qu Y D, Li R D.Effect of aging treatments on the mechanical and corrosive behaviors of spray-formed 7075 alloy[J]. J. Mater. Eng. Perform., 2014, 23: 3842
[20] Su R M, Qu Y D, You J H, et al.Effect of pre-aging on stress corrosion cracking of spray-formed 7075 alloy in retrogression and re-aging[J]. J. Mater. Eng. Perform., 2015, 24: 4328
[21] Chen Z G, Ren J K, Zhang J S, et al.Regulation mechanism of novel thermomechanical treatment on microstructure and properties in Al-Zn-Mg-Cu alloy[J]. J. Mater. Eng. Perform., 2016, 25: 359
[22] Li N, Liu S. Effects of local laser surface treatment on residual stress of 7075 aluminum alloy[J]. Heavy Mach., 2014(3): 41(李娜, 刘帅. 局部激光表面处理对7075铝合金残余应力的影响[J]. 重型机械, 2014(3): 41)
[23] Danh N C, Rajan K, Wallace W.A TEM study of microstructural changes during retrogression and reaging in 7075 aluminum[J]. Metall. Trans., 1983, 14A: 1843
[24] Park J K, Ardell A J.Effect of retrogression and reaging treatments on the microstructure of Al-7075-T651[J]. Metall. Mater. Trans., 1984, 15A: 1531
[25] Park J K, Ardell A J.Microstructures of the commercial 7075 Al alloy in the T651 and T7 tempers[J]. Metall. Trans., 1983, 14A: 1957
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!