Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (4): 315-320    DOI: 10.11901/1005.3093.2017.170
ARTICLES Current Issue | Archive | Adv Search |
Effect of Grain Orientation and Ordered Phase on Ductility of Fe-6.5%Si Alloy Wires
Shibo WEN1, Wei YANG2, Xiangju SHI1, Yongfeng LIANG1, Feng YE1()
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2 Institute of Research of Iron and Steel, Shasteel, Jiangsu 215625, China
Cite this article: 

Shibo WEN, Wei YANG, Xiangju SHI, Yongfeng LIANG, Feng YE. Effect of Grain Orientation and Ordered Phase on Ductility of Fe-6.5%Si Alloy Wires. Chinese Journal of Materials Research, 2018, 32(4): 315-320.

Download:  HTML  PDF(3685KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

It reveals that the highest room-temperature ductility of the rolled sheets of Fe-6.5%Si (mass fraction) alloy is 0.8%, while the average tensile elongations of hot drawn wires are more than 1%. Furthermore, the maximum tensile elongation of the wires reaches 5.6%. By analyzing the microstructure, ordered structure, and deformation texture of the alloy, it follows that the ordered structure and deformation texture play important roles in improving the plasticity. This can be attributed to the structural change of B2 ordered structure and a strong <110> fiber texture of the wires.

Key words:  metallic materials      Fe-6.5%Si      ductility      microstructure      ordered structure      deformation texture     
Received:  10 March 2017     
Fund: Supported by National Natural Science Foundation of China (Nos. 51471031 & U1660115) and State Key Laboratory for Advanced Metals and Materials Independent Project (No. 2016Z-17)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.170     OR     https://www.cjmr.org/EN/Y2018/V32/I4/315

Fig.1  Tensile engineering stress-strain curves of Fe-6.5%Si alloy sheets and wires (a) 0.2 mm sheets before and after heat treatment; (b) 1.6 mm wires; (c) 1.15 mm wires after heat treatment
Fig.2  Microstructure of Fe-6.5%Si 0.2 mm sheets before and after heat treatment (a) 0.2 mm sheets before heat treatment; (b) 0.2 mm sheets after heat treatment
Fig.3  Microstructure of Fe-6.5%Si alloy wires (a) 1.6 mm wires; (b) 1.15 mm wires after heat treatment
Fig.4  [011] zone diffraction pattern and bright field image in Fe-6.5%Si alloy 0.2 mm sheets (a) [011] zone diffraction pattern; (b) bright field image showing dislocations
Fig.5  [011] zone diffraction pattern, dark and bright field image in Fe-6.5%Si alloy 0.2 mm sheets after heat treatment (a) [011] zone diffraction pattern; (b) dark field image showing B2 domains; (c) bright field image showing dislocations
Fig.6  [011] zone diffraction pattern, dark and bright field image in Fe-6.5%Si alloy ?1.6 mm wires (a) [011] zone diffraction pattern; (b) dark field image showing B2 domains; (c) bright field image showing dislocations
Fig.7  Orientational distribution of Fe-6.5%Si alloy ?1.6 mm wires (a) IPF orientational distribution; (b) inverse pole figures
Fig.8  Orientational distribution of Fe-6.5%Si alloy 1.15 mm wires after heat treatment (a) IPF orientational distribution; (b) inverse pole figures
[1] Tian M B.Magnetic Materials [M]. Beijing: Tsinghua University Press, 2001(田民波. 磁性材料[M]. 北京: 清华大学出版社, 2001)
[2] He Z Z.Electrical Steel [M]. Beijing: Metallurgical Industry Press, 2012(何忠治. 电工钢[M]. 北京: 冶金工业出版社, 2012)
[3] Arai K I, Ishiyama K J.Recent developments of new soft magnetic materials[J]. J. Magn. Magn. Mater., 1994, 133(1-3): 233
[4] Littmann M F.Iron and silicon-iron alloys[J]. IEEE. T. Magn., 1971, 7(1): 48
[5] Bozorth R M. Ferromagnetism [M]. New York: D. Van Nostrand company, Ins.1951, ch.4, 67
[6] Raviprasad K, Chattopadhyay K.The influence of critical points and structure and microstructural evolution in iron rich Fe-Si alloys[J]. Acta Metall. Mater., 1993, 41(2): 609
[7] Yelsukov Y P, Barinov V A, Lapina T P, et al.Ordering kinetics in Fe3Al alloy[J]. Phys. Met. Metalloar+., 1985, 60(5): 83
[8] Fish G E, Chang C F, Bye R.Frequency dependence of core loss in rapidly quenched Fe-6.5wt.?%Si[J]. J. Appl. Phys., 1988, 64(10): 5370
[9] Takada Y, Abe M, Masuda S, et al.Commercial scale production of Fe-6.5wt.% Si sheet and its magnetic properties[J]. J. Appl. Phys., 1988, 64(10): 5367
[10] Silva M C A, Bolfarini C, Kiminami C S.Microstructure and magnetic properties of Fe-6.5wt%Si alloy obtained by spray forming process [J]. Mater.Sci.Forum.,2005, 498-499: 111
[11] Li R, Shen Q, Zhang L, et al.Magnetic properties of high silicon iron sheet fabricated by direct powder rolling[J]. J. Magn. Magn. Mater., 2004, 281: 135
[12] Ros-Ya?ez T, Houbaert Y, Rodriguez VG.High-silicon steel produced by hot dipping and diffusion annealing[J]. J. Appl. Phys., 2002, 91: 7857
[13] Liang Y F, Ye F, Lin J P, et al.Effect of annealing temperature on magnetic properties of cold rolled high silicon steel thin sheet[J]. J. Alloy. Compd., 2010, 491(1-2): 268
[14] Yang W, Li H, Yang K, et al.Hot drawn Fe-6.5wt.% Si wires with good ductility[J]. Mat. Sci. Eng B-Solid., 2014, 186:79
[15] Yoshimi K, Terashima H, Hanada S.Effect of APB type on tensile properties of Cr added Fe3Al with D03structure[J]. Mat. Sci. Eng A-Struct.,1995, 194(1):53
[16] Yang W.Fabrication and properties of wires of Fe-6.5%Si electrical steel [D]. Beijing: University of Science and Technology Beijing, 2013(杨伟. Fe-6.5%Si电工钢丝材的制备及性能[D]. 北京: 北京科技大学, 2013)
[17] Fang X S.Fabrication and texture research of cold rolled6.5wt.%Si electrical steel with large size and high magnetic induction[D]. Beijing: University of Science and Technology Beijing, 2012(房现石. 高磁感大尺寸6.5wt.%Si电工钢薄板冷轧制备及织构研究[D]. 北京: 北京科技大学, 2012)
[18] Liang Y F, Ye F, Lin J P, et al.Effect of heat treatment on mechanical properties of heavily cold-rolled Fe-6.5wt%Si alloy sheet[J]. Sci. China. Tech. Sci., 2010, 53(4): 1008
[19] Shin J S, Lee Z H, Lee T D, et al.The effect of casting method and heat treating condition on cold workability of high-Si electrical steel[J]. Scripta Mater., 2001, 45(6): 725
[20] Li H, Liang Y F, Ye F, et al.Effect of grain size and ordering degree on mechanical properties of Fe-6.5wt%Si alloy[J]. Fundamental Problems of Modern Material Science, 2015, 12(2)
[21] Li H, Liang Y F, Ye F.Effect of heat treatment on ordered structures and mechanical properties of Fe-6.5wt%Si alloy[J]. Mater. Trans., 2015, 56(5): 759
[22] Fu H D, Zhang Z H, Jiang Y B, et al.Applying the grain orientation dependence of deformation twinning to improve the deformation properties of an Fe-6.5 wt% Si alloy[J]. J. Alloy. Compd.,2016, 689: 307
[23] Marcinkowski M J, Brown N.Theory and direct observation of dislocations in the Fe3Al superlattices[J]. Acta. Metall., 1961, 9(8): 764
[24] Marcinkowski M J, Fisher R M.Theoretical analysis of plastic deformation in superlattices based on the body-centered cubic structure[J]. J. Appl. Phys., 1963, 34:2135
[25] Li H, Liang Y F, He R Q, et al.Ordered structure and mechanical properties of Fe-6.5%Si alloy fabricated by rapid quenching[J]. Acta Metall. Sin., 2013, 49(11): 1452(李慧, 梁永锋, 贺睿琦等. 快速凝固Fe-6.5%Si合金有序结构及力学性能研究[J]. 金属学报, 2013, 49(11): 1452)
[26] Cheung J T, Morgan P E D, Lowndes D H, et al. Structural and electrical properties of La0.5Sr0.5CoO3 epitaxial films[J]. Appl. Phys. Lett., 1993, 62(17): 2045
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!