|
|
Cyclic Creep Behavior of 11.5CrNbTi and 15Cr0.5MoNbTi Ultra Pure Ferritic Stainless Steels |
Caihong YING1,2, Lijia CHEN1( ), Tianlong LIU1, Lianquan GUO2 |
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China 2 School of Science, Shenyang University of Technology, Shenyang 110870, China |
|
Cite this article:
Caihong YING, Lijia CHEN, Tianlong LIU, Lianquan GUO. Cyclic Creep Behavior of 11.5CrNbTi and 15Cr0.5MoNbTi Ultra Pure Ferritic Stainless Steels. Chinese Journal of Materials Research, 2017, 31(7): 481-488.
|
Abstract Cyclic creep tests at 650°C for both 11.5CrNbTi and 15Cr0.5MoNbTi ultra pure ferritic stainless steels were conducted under the stress-controlled mode , the effect of hold time introduced at the maximum applied stress on the deformation and fracture behaviors of the ferritic stainless steels was investigated. The results show that with prolonging the hold time, the minimum cyclic creep rate increases, and the cyclic creep life and the cycle number to fracture decrease for both stainless steels. Under the same conditions, the cyclic creep resistance of the 15Cr0.5MoNbTi stainless steel is higher than that of the 11.5CrNbTi stainless steel. The cyclic creep fracture mode for two stainless steels is transgranular fracture. With prolonging the hold time, the quantity of creep voids increases and the effect of creep damage gets enhanced. The microstructures after the cyclic creep are composed of sub-grains. The deformation mechanism of cyclic creep is mainly the dislocation slip and cross slip.
|
Received: 02 March 2017
|
|
Fund: Supported by National Natural Science Foundation of China (No. 51134010) |
[1] | Li X, Liu H L, Bi H Y, et al.Oxidation behavior of 18CrNb ferritic stainless steel at elevated temperatures[J]. Chin. J. Mater. Res., 2016, 30(4): 263李鑫, 刘后龙, 毕洪运等. 中铬铁素体不锈钢18CrNb高温氧化行为[J]. 材料研究学报,2016,30(4): 263) | [2] | Ma L, Han J, Shen J Q, et al.Effects of microalloying and heat-treatment temperature on the toughness of 26Cr-3.5Mo super ferritic stainless steels[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27(3): 407 | [3] | Qiang S M, Jiang L Z, Li J, et al.Evaluation of intergranular corrosion susceptibility of 11Cr ferritic stainless steel by DL-EPR method[J]. Acta Metall. Sin., 2015, 51(11): 1349(强少明, 江来珠, 李劲等. 双环电化学动电位再活化法评价11Cr铁素体不锈钢晶间腐蚀敏感性[J]. 金属学报, 2015,51(11): 1349) | [4] | Liu T L, Chen L J, Bi H Y, et al.Effect of Mo on high-temperature fatigue behavior of 15CrNbTi ferritic stainless steel[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27(3): 452 | [5] | Li H B, Jiang Z H, Feng H, et al.Corrosion behavior of ferritic stainless steel with 15wt% chromium for the automobile exhaust system[J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(9): 850 | [6] | Dong Z G, Chen H T, Lang Y P, et al.Effect of Ti and Nb on high temperature mechanical property of ferritic stainless steel used for hot end of automotive exhaust system[J]. Iron and Steel, 2013, 48(2): 64董志刚, 陈海涛, 郎宇平等. 铌、钛对汽车排气系统热端用铁素体不锈钢高温力学性能的影响[J]. 钢铁,2013,48(2): 64) | [7] | Tie Z M.Mechanical properties of Ni-Ti ferritic stainless steel after high temperature aging[J]. Foundry Technology,2015, 36(1): 74铁争鸣. 汽车排气管用Nb-Ti铁素体不锈钢在高温时效过程中的力学性能变化 [J].铸造技术, 2015, 36(1): 74) | [8] | Wang S L, Shen B L, Gao S J, et al.Influence of heat treatment on high temperature cyclic creep behavior of mullite short fiber reinforced ZL107 alloy[J]. Acta Metall. Sin., 2000, 36(5): 550王珊玲, 沈保罗, 高升吉等. 热处理对莫来石短纤维增强ZL107合金高温循环蠕变行为的影响[J]. 金属学报, 2000, 36(5): 550) | [9] | Zhao P, Xuan F Z.Ratchetting behavior of advanced 9-12% chromium ferrite steel under creep-fatigue loadings[J]. Mech. Mater., 2011, 43: 299 | [10] | Zhu S J, Yang Z A, Wang Z G.Cyclic creep deformation and fracture of a Cr-Mo rotor steel at elevated temperatures[J]. Chin. J. Mat. Sci. Technol., 1992, 8: 255 | [11] | Kim W G, Park J Y, Ekaputra I M W, et al. Cyclic creep behaviour under tension-tension loading cycles with hold time of modified 9Cr-1Mo steel[J]. Mater. High Temp., 2014, 31(3): 249 | [12] | Kang G Z, Zhang J, Sun Y F, et al.Uniaxial time-dependent ratcheting of SS304 stainless steel at high temperatures[J]. J. Iron Steel Res. Int., 2007, 14(1): 53 | [13] | Morris D G, Harries D R.The cyclic creep behaviour of Type 316 stainless steel[J]. J. Mater. Sci., 1978, 13: 985 | [14] | Paul S K, Sivaprasad S, Dhar S, et al.True stress-controlled ratcheting behavior of 304LN stainless steel[J]. J. Mater. Sci., 2012, 47: 4660 | [15] | Sarkar A, Nagesha A, Parameswaran P, et al.Transition in failure mechanism under cyclic creep in 316LN austenitic stainless steel[J]. Metall. Mater. Trans. A, 2014, 45: 2931 | [16] | Sarkar A, Nagesha A, Sandhya R, et al.Effect of mean stress and stress amplitude on the ratcheting behaviour of 316LN stainless steel under dynamic strain aging regime[J]. Mater. High Temp., 2012, 29(4): 351 | [17] | Kang G Z, Dong Y W, Wang H, et al.Dislocation evolution in 316L stainless steel subjected to uniaxial ratcheting deformation[J]. Mater. Sci. Eng., A, 2010, 527: 5952 | [18] | Gaudin C, Feaugas X.Cyclic creep process in AISI 316L stainless steel in terms of dislocation patterns and internal stresses[J]. Acta Mater., 2004, 52: 3097 | [19] | Shu J, Bi H Y, Li X, et al.The effects of molybdenum addition on high temperature oxidation behavior at 1,000℃ of type 444 ferritic stainless steel[J].Oxid. Met., 2012, 78: 253 | [20] | Fan Z C, Chen X D, Chen L, et al.Fatigue creep interaction behavior of 1.25Cr0.5Mo steels and analysis free from creep invalidation[J]. Journal of Zhejiang University (Engineering Science), 2006, 40(12): 2021范志超, 陈学东, 陈凌等. 1.25Cr0.5Mo钢疲劳蠕变及免于蠕变失效分析[J]. 浙江大学学报(工学版), 2006, 40(12): 2021) | [21] | Kang G Z, Dong Y W, Liu Y J, et al.Uniaxial ratchetting of 20 carbon steel: macroscopic and microscopic experimental observations[J]. Mater. Sci. Eng., A, 2011, 528: 5610 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|