Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (2): 155-160    DOI: 10.11901/1005.3093.2016.793
ARTICLES Current Issue | Archive | Adv Search |
Electro-catalytic Activity of Composite Films of Pd-doped Bacterial Cellulose Nano-fibers for Ethanol Oxidation
Kelong AO, Dawei LI, Yixin YAO, Pengfei LV, Qufu WEI()
Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
Cite this article: 

Kelong AO, Dawei LI, Yixin YAO, Pengfei LV, Qufu WEI. Electro-catalytic Activity of Composite Films of Pd-doped Bacterial Cellulose Nano-fibers for Ethanol Oxidation. Chinese Journal of Materials Research, 2018, 32(2): 155-160.

Download:  HTML  PDF(2743KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Bacterial cellulose nanofibers (BCFs) were synthesized by fermentation process and then with the prepared BCFs as carrier material, composite films of Pd-doped bacterial cellulose nanofibers (Pd/BCF) were prepared by depositing nano-particles of Pd (Pd-NPs) on the carrier via chemical reduction process. The prepared Pd-doped BCFs and composite films Pd/BCF were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), electrochemical impedance spectra (EIS), chronoamperometry (CA), and chronopotentiometry (CP). The results show that Pd-NPs were well dispersed on BCFs and especially in the mesoporous of BCFs. The composite films contain c.a. 19% (mass fraction) of Pd-NPs with a mean particle size c.a. 10 nm. The composite of Pd/BCF had better catalytic activity in contrast to the traditional carbon carrier material and Pt-catalyst. Besides, the composite of Pd/BCF exhibited relatively high poison tolerance during the ethanol oxidation process.

Key words:  composite      fuel cell      ethanol      electro-catalytic      bacterial cellulose      palladium     
Received:  30 December 2016     
ZTFLH:  TM9114  
Fund: Supported by Natural Science Foundation of Jiangsu Province (No. BK20150155), Six Talent Peaks Project in Jiangsu Province (No. 2014-XCL001), Fundamental Research Funds for the Central Universities (Nos. JUSRP51505, JUSRP115A04&JUSRP51621A), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.793     OR     https://www.cjmr.org/EN/Y2018/V32/I2/155

Fig.1  SEM image of Pd/BCF (a), the inset shows the high resolution SEM; TEM image of Pd/BCF (b) and particle size distribution histogram of Pd on BCF (c)
Fig.2  XRD patterns of Pd/BCF
Fig.3  EIS of different electrodes
Fig.4  CV curves of different electrodes in 1 mol/L NaOH solution. The inset shows the magnification image of BC-Nafion/GCE electrode (scan rate: 20 mV/s)
Fig.5  CV curves for ethanol electrocatalytic oxidation on different electrodes (solution: 0.25 mol/L C2H5OH+0.25 mol/L NaOH; scan rate: 20 mV/s)
Catalyst
electrodes
ES/V EP /V IP/mAcm-2 References
BC 1.25×10-2
Pd/BCF-10 μL -0.63 -0.19 15.60
Pd/BCF-20 μL -0.69 -0.22 23.63
Pd/Vulcan XC-72 -0.60 -0.10 15.70 [7]
Pd/graphene -0.65 -0.09 23.20
Pt/C 17.53 [18]
PtMo/C 20.83
Pd/t-CNF/GC -0.78 -0.23 57.00 [11]
Table 1  Electrochemical performances of ethanol oxidization on different catalyst electrodes
Fig.6  CA curves for ethanol oxidation on different electrodes (Evs Ag/AgCl=-0.2 V)
Fig.7  CP curves for ethanol oxidation on different electrodes (current density: 8 mA/cm2)
Fig.8  Schema of electrocatalytic oxidation of ethanol on Pd/BCF catalyst
[1] Zhu Y, Zhou Y Q, Wei J D, et al.Research progress of anode electrocatalysts for direct ethanol fuel cell[J]. Mod. Chem. Ind., 2016, 36(4): 18(朱昱, 周燕琴, 魏金栋等. 直接乙醇燃料电池电催化剂研究进展[J]. 现代化工, 2016, 36(4): 18)
[2] Dong H Z, Dong L F.Research on electrocatalytic activity of carbon nanotube-supported Pt-bimetallic nanoparticles for methanol and ethanol oxidations[J]. Chin. J. Mater. Res., 2011, 25: 579(董红周, 董立峰. 单壁碳纳米管负载Pt基二元金属催化剂对甲醇和乙醇氧化的电催化性能研究[J]. 材料研究学报, 2011, 25: 579)
[3] Vigier F, Coutanceau C, Hahn F, et al.On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies[J]. J. Electroanal. Chem., 2004, 563: 81
[4] An L, Zhao T S, Li Y S.Carbon-neutral sustainable energy technology: Direct ethanol fuel cells[J]. Renew. Sust. Energ. Rev., 2015, 50: 1462
[5] Vohra M, Manwar J, Manmode R, et al.Bioethanol production: Feedstock and current technologies[J]. J. Environ. Chem. Eng., 2014, 2: 573
[6] Li Q X, Liu M S, Xu Q J, et al.Progress of Pd-based catalysts for fuel cells[J]. Chinese J. Power Sources, 2013, 37: 1473(李巧霞, 刘明爽, 徐群杰等. 燃料电池Pd催化剂研究进展[J]. 电源技术, 2013, 37: 1473)
[7] Wen Z L, Yang S D, Song Q J, et al.High activity of Pd/graphene catalysts for ethanol electrocatalytic oxidation[J]. Acta Phys. - Chim. Sin., 2010, 26: 1570(温祝亮, 杨苏东, 宋启军等. 石墨烯负载高活性Pd催化剂对乙醇的电催化氧化[J]. 物理化学学报, 2010, 26: 1570)
[8] Sekhar A C S, Meera C J, Ziyad K V, et al. Synthesis and catalytic activity of monodisperse gold-mesoporous silica core-shell nanocatalysts[J]. Catal. Sci. Technol., 2013, 3: 1190
[9] Gong Y M, Chen M Y, Guo J, et al.Synthesis of functionalized bacterial cellulose for preparing gold nanoparticles[J]. J. Dalian Polytech. Univ., 2016, (4): 285(宫玉梅, 陈美妍, 郭静等. 细菌纤维素纳米金复合材料的制备[J]. 大连工业大学学报, 2016, (4): 285)
[10] Mahendiran C, Maiyalagan T, Scott K, et al.Synthesis of a carbon-coated NiO/MgO core/shell nanocomposite as a Pd electro-catalyst support for ethanol oxidation[J]. Mater. Chem. Phys., 2011, 128: 341
[11] Qin Y H, Yang H H, Zhang X S, et al.Effect of carbon nanofibers microstructure on electrocatalytic activities of Pd electrocatalysts for ethanol oxidation in alkaline medium[J]. Int. J. Hydrogen Energ., 2010, 35: 7667
[12] Wu X D, Lu C H, Zhou Z H, et al.Green synthesis and formation mechanism of cellulose nanocrystal-supported gold nanoparticles with enhanced catalytic performance[J]. Environ. Sci.: Nano, 2014, 1: 71
[13] Yu X B, Quan W H, Bian Y R.Novel biopolymer-microbial cellulose and its commercial applications[J]. J. Cell. Sci. Technol., 1999, 7(3): 42(余晓斌, 全文海, 卞玉荣. 细菌纤维素的商业化用途[J]. 纤维素科学与技术, 1999, 7(3): 42)
[14] Son S U, Jang Y J, Park J, et al.Designed synthesis of atom-economical Pd/Ni bimetallic nanoparticle-based catalysts for sonogashira coupling reactions[J]. J. Am. Chem. Soc., 2004, 126: 5026
[15] Cai Z J, Kim J.Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility[J]. Cellulose, 2010, 17: 83
[16] Singh R N, Singh A, Anindita. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni, Part II: Methanol electrooxidation in 1 M KOH[J]. Int. J. Hydrogen Energ., 2009, 34: 2052
[17] Yang S D, Shen C M, Liang Y Y, et al.Graphene nanosheets-polypyrrole hybrid material as a highly active catalyst support for formic acid electro-oxidation[J]. Nanoscale, 2011, 3: 3277
[18] Li L, Yuan X X, Xia X Y, et al.Effects of Mo doping on properties of Pt/C as catalyst towards electro-oxidation of ethanol[J]. J. Inorg. Mater., 2014, 29: 1044(李琳, 原鲜霞, 夏小芸等. Mo掺杂对Pt/C催化剂乙醇氧化催化性能的影响[J]. 无机材料学报, 2014, 29: 1044)
[19] Fang X, Shen P K.Mechanism of ethanol electrooxidation on Pd electrode[J]. Acta. Phys. - Chim. Sin., 2009, 25: 1933(方翔, 沈培康. 乙醇在钯电极上的电氧化机理[J]. 物理化学学报, 2009, 25: 1933)
[20] Tripkovi? A V, Popovi? K D, Lovi? J D.The influence of the oxygen-containing species on the electrooxidation of the C1-C4 alcohols at some platinum single crystal surfaces in alkaline solution[J]. Electrochim. Acta, 2001, 46: 3163
[21] Zhang Z Y, Xin L, Sun K, et al.Pd-Ni electrocatalysts for efficient ethanol oxidation reaction in alkaline electrolyte[J]. Int. J. Hydrogen Energ., 2011, 36: 12686
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!