Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (8): 561-568    DOI: 10.11901/1005.3093.2016.778
Orginal Article Current Issue | Archive | Adv Search |
Effect of Ca or Y Addition on Hot Tearing Behavior of Mg-1.5Zn Alloys
Zhi WANG1(), Ye ZHOU1, Le ZHOU2, Yizhou LI1, Pingli MAO1, Zheng LIU1, Feng WANG1
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 School of Material and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
Cite this article: 

Zhi WANG, Ye ZHOU, Le ZHOU, Yizhou LI, Pingli MAO, Zheng LIU, Feng WANG. Effect of Ca or Y Addition on Hot Tearing Behavior of Mg-1.5Zn Alloys. Chinese Journal of Materials Research, 2017, 31(8): 561-568.

Download:  HTML  PDF(3502KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of Ca or Y (2 % and 3 %, mass fraction, respectively) on hot tearing behavior of Mg-1.5% Zn alloy was investigated using a constrained rod casting (CRC) apparatus equipped with a load cell and data acquisition system. Tear volumes were quantified by wax penetration method. The experimental results show that the addition of Ca or Y could significantly decrease the hot tearing susceptibility (HTS) of the Mg-1.5Zn alloys due to that they could reduce the solidification temperature range (ΔT) for vulnerable regions. The reduction in ΔT may correspondingly imply the decrease of the HTS. In addition, the HTS further reduces with the higher amount of Ca or Y. It is observed that some of the formed cracks are possible to be healed by the subsequent refilling of the remained liquids during the final solidification stage, while the propagation of hot cracks along the dendritic and grain boundaries may be ascribed to the interdendritic separation or liquid film rupture.

Key words:  metallic materials      hot tearing susceptibility      crack volume      liquid film      eutectic liquid     
Received:  29 December 2016     
ZTFLH:  TG146.2  
Fund: Supported by National Natural Science Foundation of China (Nos.51504153, 51571145 & 51404137) and General Project of Scientific Research of the Education Department of Liaoning Province (No.L2015397)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.778     OR     https://www.cjmr.org/EN/Y2017/V31/I8/561

Fig.1  Schematics of experimental setup (a) whole setup (b) thermocouple position for detecting onset of hot cracking during casting (unit: mm)
Fig.2  (a) Hot tearing susceptibility of Mg-1.5Zn-xCa(x=2, 3) and Mg-1.5Zn-xY(x=2, 3) alloys, (b) Curves of the solidification temperature changes according to the variation of solid fraction in vulnerbleregion
Alloys Tl Ts FR T0.9 T0.99 ΔT
Mg-1.5Zn 645 341 304 609 352 257
Mg-1.5Zn-2Ca 635 394 241 486 394 92
Mg-1.5Zn-3Ca 629 394 235 485 394 91
Mg-1.5Zn-2Y 642 564 78 593 581 12
Mg-1.5Zn-3Y 637 564 73 583 567 16
Table 1  Calculated temperature (℃) at different solid fractions with Scheil model for Mg-1.5Zn alloys with different Ca or Y contents
Fig.3  Contraction force and temperature as a function of time for Mg-1.5Zn-xCa (x=2, 3) and Mg-1.5Zn-xY (x=2, 3) alloys: (a) Mg-1.5Zn-2Ca; (b) Mg-1.5Zn-3Ca; (c) Mg-1.5Zn-2Y; (d) Mg-1.5Zn-3Y
Alloys Hot crack initiation Hot crack propagation
Ti/℃ fs-i/% Fr/N tp/s vp/N/s
Mg-1.5Zn-2Ca 562 76.4 20.6 4.6 4.5
Mg-1.5Zn-3Ca 603 53.2 16.8 4.2 4.0
Mg-1.5Zn-2Y 618 79 50.8 22.7 2.3
Mg-1.5Zn-3Y 621 70.6 15.0 10.7 1.4
Table 2  Information about the initiation and propagation of hot tearing for Mg-1.5Zn-xCa (x=2, 3) and Mg-1.5Zn-xY(x=2, 3) alloys
Table 3  Hot crack of Mg-1.5Zn system with different Ca and Y content
Fig.4  Hot crack volume of Mg-1.5Zn system with different Ca or Y contents
Fig.5  Hot crack volume as function of the ΔT for the Mg-1.5Zn alloys at different Ca and Y content
Fig.6  Microstructures near the tear region of the Mg-1.5Zn-xCa (x=2, 3) and Mg-1.5Zn-xY (x=2, 3) alloys: (a) Mg-1.5Zn-2Ca; (b) Mg-1.5Zn-3Ca; (c) Mg-1.5Zn-2Y; (d) Mg-1.5Zn-3Y
Fig.7  Fracture surfaces of hot tearing regions for (a) Mg-1.5Zn-2Ca, (b) Mg-1.5Zn-3Ca and (c) Mg-1.5Zn-2Y alloys (d) EDS analysis of Mg-1.5Zn-2Y
Alloys Mg-1.5Zn-2Ca Mg-1.5Zn-3Ca Mg-1.5Zn-2Y Mg-1.5Zn-3Y
fle / molL-1 0.042 0.060 0.007 0.009
Table 4  Mole fractions of eutectic liquid in Mg-1.5Zn-xCa and Mg-1.5Zn-xY alloys
[1] Yan Y Q, Zhang T J, Deng J, et al.Research and development of heat resistant Mg alloys[J]. Rare Met. Mat. Eng., 2004, 33: 561(闫蕴琪, 张廷杰, 邓炬等. 耐热镁合金的研究现状与发展方向[J]. 稀有金属材料与工程, 2004, 33: 561)
[2] Liu Z, Wang Y, Wang Z G, et al.Developing trends of research and application of magnesium alloys[J]. Chin. J. Mater. Res., 2000, 14(5): 449(刘正, 王越, 王中光等. 镁基轻质材料的研究与应用[J]. 材料研究学报, 2000, 14(5): 449)
[3] Eskin D G, Suyitno, Katgerman L.Mechanical properties in the Semi-Solid state and hot tearing of aluminum alloys[J]. Prog. Master Res., 2004, 49: 629
[4] Zhou L, Huang Y D, Mao P L, et al.Influence of composition o hot tearing in binary Mg-Zn alloys[J]. Int. J. Cast Met. Res., 2011, 24(3-4): 170
[5] Sandloebes S, Friak M, Zaefferer S, et al.The relation between ductility and stacking fault energies in Mg and Mg-Y alloys[J]. Acta Metall., 2012, 60(6-7): 3011
[6] Chen T J, Zhang D H, Wang W, et al.Effects of Y content on microstructures and mechanical properties of as-cast Mg-Zn-Nd alloys[J]. China Foundry, 2015, 12(5): 339
[7] Liu Z, Zhang Y, Mao P L, et al. Effect of Ca on hot tearing susceptibility of Mg-Zn alloy [J]. J. Shenyang Univ. Technol., 2013(6):(刘正, 张越, 毛萍莉等. Ca对Mg-Zn合金热裂敏感性的影响[J] 沈阳工业大学学报, 2013(6): 624)
[8] Zhang B P, Wang Y, Geng L, et al. Effects of calcium on texture and mechanical properties of hot-extruded Mg-Zn-Ca alloys [J]. Mater. Sci. Eng., 2012, A 539(2): 56
[9] Somekawa H, Mukai T. High strength and fracture toughness balance on the extruded Mg-Ca-Zn alloy [J]. Mater. Sci. Eng., 2007, A 459(1-2): 366
[10] Zhen Z S, Hort N, Huang Y D, et al. Quantitative determination on hot tearing in Mg-Al binary alloys [J]. Mater. Sci. Forum, 2009, 618-619: 533-540
[11] Clyne T W, Davies G J.The influence of composition on solidification cracking susceptibility in binary alloys systems[J]. The British Foundryman, 1981, 74: 65
[12] Gunde P, Schiffl A, Uggowitzer P J.Influence of yttrium additions on the hot tearing susceptibility of magnesium-zinc alloys[J]. Mater. Sci. Eng. A, 2010, 527(26): 7074
[13] Wang Z, Huang Y D, Srinivasan A, et al.Hot tearing susceptibility of binary Mg-Y alloy castings[J]. Mater. Design, 2013 47(9): 90
[14] Feng Y, Mao P L, Liu Z, et al.Hot tearing susceptibility of MgZn4.5YxZr0.5 alloys and mechanism[J]. China Foundry, 2016 13(3): 159
[15] Zhou L.Investigation on hot tearing susceptibility and mechanism for Mg-Zn-Al alloys [D]. Shenyang: Shenyang University of Technology, 2011(周乐. Mg-Zn-(Al)系热裂敏感性及其微观机理研究, 沈阳: 沈阳工业大学, 2011)
[16] Ding H, Fu H Z.Influence of composition on hot cracking tendency of directionally solidified Al-Cu alloy[J]. Acta Metall. Sin., 1995, 31(8): 376(丁浩, 傅恒志. 化学成分对定向凝固Al-Cu合金热裂倾向的影响[J]. 金属学报, 1995, 31(8), 376)
[17] Farup I, Drezet J M, Rappaz M.In situ observation of hot tearing formation in succinonitrile-acetone[J]. Acta Metall., 2001, 49(7):1261
[18] Huang Y D, Wang Z, Srinivasan A, et al. Metallurgical characterization of hot tearing curves recorded during solidification of magnesium alloys [J]. Acta Phys. Pol., 2012, A 122(3): 497
[19] Shavadia J, Zheng, Y Maleki N D, et al. Effect of Zn addition on hot tearing behavior of Mg-0.5Ca-xZn alloys[J]. Mater. Design, 2015, 87: 157
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!