Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (10): 781-788    DOI: 10.11901/1005.3093.2016.711
ARTICLES Current Issue | Archive | Adv Search |
Effect of Mg- and Si-content on Microstructure and Mechanical Properties of a New High Strength Al-Mg-Si-Cu Alloy Prepared by Low Frequency Electromagnetic Casting
Yi MENG1(), Jianzhong CUI2, Zhihao ZHAO2, Yuanzhi ZHU1
1 School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
2 Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
Cite this article: 

Yi MENG, Jianzhong CUI, Zhihao ZHAO, Yuanzhi ZHU. Effect of Mg- and Si-content on Microstructure and Mechanical Properties of a New High Strength Al-Mg-Si-Cu Alloy Prepared by Low Frequency Electromagnetic Casting. Chinese Journal of Materials Research, 2017, 31(10): 781-788.

Download:  HTML  PDF(1212KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure and mechanical properties of a new high strength Al-Mg-Si-Cu alloy prepared by low frequency electromagnetic casting (LFEC) alloy were studied by using optical microscope, energy dispersive spectroscopy (EDS), DSC analysis, JMat Pro 5.0 software and mechanical tests at room temperature. The results show that the temperatures of homogenization and solid solution for the alloy can be identified as 540℃ and 550℃ respectively. Mg2Si phase could refine the as-cast grain size obviously and its effect on the as-cast grain refinement increases with the increase of Mg2Si content in the alloy. While, the refining effect of Mg2Si and other grain refiners on the grain sizes of ingots will be reduced by the excess of Mg or Si. However, the excess of Mg content in the alloy increases the elongation to more than 19% without reducing its strength. With the addition of 1.60% (mass fraction) Mg and 1.15% (mass fraction) Si to the Al-Mg-Si-Cu alloy exihibits higher strength (ultimate tensile strength 419 MPa and yield strength 362 MPa respectively) with undiminished ductility (elongation 18.75%).

Key words:  metallic materials      strength and ductility      high strength aluminum alloy      microstructure     
Received:  08 October 2016     
ZTFLH:  TG146.2  
Fund: Supported by Training Program Foundation for the Talents by Beijing (No.2015000020124G023), Young Teacher Training Program of North China University of Technology (No.XN072-017), the Scientific Research Fundation Project of North China University of Technology (No.1100000156041-2015)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.711     OR     https://www.cjmr.org/EN/Y2017/V31/I10/781

Alloys Mg/Si Si Mg Cu Cr V Ti
A >1.73 (2.32Mg2Si+0.13Mg) Nominal 0.85 1.60 1.00 0.15 0.15 0.03
Analyzed 0.84 1.55 1.05 0.15 0.15 0.03
B =1.73 (2.32Mg2Si) Nominal 0.85 1.40 1.00 0.15 0.15 0.03
Analyzed 0.85 1.37 1.06 0.15 0.15 0.03
C <1.73 (2.05Mg2Si+0.40Si) Nominal 1.15 1.30 1.00 0.15 0.15 0.03
Analyzed 1.20 1.23 1.04 0.17 0.14 0.03
D <1.73 (2.29Mg2Si+0.31Si) Nominal 1.15 1.45 1.0 0.15 0.15 0.03
Analyzed 1.21 1.48 1.06 0.16 0.15 0.03
E <1.73 (2.53Mg2Si+0.22Si) Nominal 1.15 1.60 1.00 0.15 0.15 0.03
Analyzed 1.18 1.58 1.03 0.17 0.15 0.03
Table 1  Chemical composition of alloys A~E (%, mass fraction)
Casting
method
Casting temperature
/℃
Casting speed
/mmmin-1
Flow rate of cooling water/Lmin-1 Frequency of electromagnetic
field /Hz
Current intensity/A
LFEC 750 110 50~80 15 120
Table 2  Parameters of casting processes
Fig.1  Calculation results of alloys A~E by JMat Pro 5.0 software respectively (a) alloy A, (b) alloy B, (c) alloy C, (d) alloy D, (e) alloy E
Fig.2  DSC analysis of ingots of alloy E before homogenization treatment
Fig.3  SEM image and EDS analysis results of as-cast alloy E: (a) SEM image; (b, c, d) EDS analysis results of phases 1#, 2# and 3# in image Fig.a respectively
Fig.4  Microstructures of as-cast alloys A~E (center) by polarized light (a) alloy A, (b) alloy B, (c) alloy C, (d) alloy D, (e) alloy E
Fig.5  Mean grain size of as-cast alloys A~E obtained from Fig.4
Fig.6  Microstructures of as-extruded alloys A~E in longitudinal direction (with etched) (a) alloy A, (b) alloy B, (c) alloy C, (d) alloy D, (e) alloy E
Fig.7  Microstructures of alloys A~E after T6 treatment in longitudinal direction (with etched): (a) alloy A, (b) alloy B, (c) alloy C, (d) alloy D, (e) alloy E
Fig.8  Mechanical properties of as-extruded and T6 alloys A~E: (a) as-extruded, (b) T6
[1] Gupta A K, Lloyd D J.Study of precipitation kinetics in a super purity Al-0.8%Mg-0.9%Si alloy using differential scanning calorimetry[J]. Metall. Mater. Trans. A, 1999, 30: 879
[2] Hirose A, Todaka H, Yamaoka H, et al.Quantitative evaluation of softened regions in weld heat-affected zones of 6061-T6 aluminum alloy-characterizing of the laser beamwelding process[J]. Metall. Mater. Trans. A, 1999, 30: 2115
[3] Eskin D G, Massardier V, Merle P.A study of high-temperature precipitation in Al-Mg-Si alloys with an excess of silicon[J]. J. Mater. Sci., 1999, 3: 820
[4] Zhang J X, Gao A H, Chen H.Influence of alloying element on microstructure and property of Al-Mg-Si aluminum alloy[J]. Foundry Tech., 2007, 28(3): 373(张建新, 高爱华, 陈昊. 合金元素对Al-Mg-Si系铝合金组织及性能的影响[J]. 铸造技术, 2007, 28(3): 373)
[5] Yang W C.Age-hardening behavior and microsturetural characterization of precipitates in Al-Mg-Si-Cu:6005A alloy [D]. Changsha: Central South University, 2011(杨文超. Al-Mg-Si-Cu系6005A合金的时效硬化行为及析出相的微观结构表征[D]. 长沙: 中南大学, 2011))
[6] Gao Y J, Wang Q S, Wang N.Atomic bonding and strengthening effection of GP zones in Al-Mg-Si alloy[J]. Mining Metall. Eng., 2006, 5: 90(高英俊, 王庆松, 王娜. Al-Mg-Si合金GP区的原子键络与强化作用[J]. 矿冶工程, 2006, 5: 90)
[7] Andersen S J, Marioara C D, Froseth A, et al.Crystalstructure of precipitate in the Al-Mg-Si alloy system and its relate to the phase[J]. Mater. Sci. Eng. A, 2005, 390: 129
[8] Zhang H T, Nagaumi H, Zuo Y B.Coupled modeling of electromagnetic field, fluid flow, heat transfer and solidification during low frequency electromagnetic casting of 7XXX aluminum alloys Part 1: development of mathematical model and comparison with experimental results[J]. Mater. Sci. Eng. A, 2007, 448: 189
[9] Zuo Y B, Cui J Z, Zhao Z H, et al.Mechanism of grain refinement of an Al-Zn-Mg-Cu alloy prepared by low-frequency electromagnetic casting[J]. J. Mater. Sci., 2012, 47: 5501
[10] Liu M P, Wei J T, Li Y C, et al.Dynamic aging behavior and mechanical properties of an Al-Mg-Si aluminium alloy induced by equal channel angular pressing[J]. Chinese J. Mater. Res., 2016, 30(10): 722(刘满平, 韦江涛, 李毅超等. 等通道转角挤压Al-Mg-Si铝合金的动态时效特性和力学性能[J]. 材料研究学报, 2016, 30(10): 722)
[11] Bergsma S C.Strengthening in the new aluminum alloy AA6069[J]. Mater. Sci. Eng. A, 1998, 254: 112
[12] Bergsma S C, Kassner M E, Li X.The optimized mechanical properties of the new aluminum alloy AA6069[J]. J. Mater. Eng. Perform., 1996, 5: 111
[13] Bergsma S C, Kassner M E. The new aluminum alloy AA6069[J]. Mater. Sci. Forum, 1996, 217-222: 1801
[14] Li H L, Yuan X G, Wu M F, et al.As-cast microstructure of Al-0.8Mg-1.0Si-0.8Cu-0.3Mn-0.5Fe-0.15Zr alloy[J]. Foundry, 2014, 63(3): 211(李赫亮, 袁晓光, 吴明富等. Al-0.8Mg-1.0Si-0.8Cu-0.3Mn-0.5Fe-0.15Zr合金铸态组织研究[J]. 铸造, 2014, 63(3): 211)
[15] Matsuda K, Uetani Y, Sato T, et al.Metastable phases in an Al-Mg-Si alloy containing copper[J]. Metall. Mater. Trans. A, 2001, 32: 1293
[16] Liu H, Zhao G, Liu C M, et al.Phase constituents of some kinds of 6000-series aluminium alloys for automotive body sheets[J]. J. Northeastern Univ.(Nat. Sci.), 2005, 26(11): 1070(刘宏, 赵刚, 刘春明等. 几种6000系汽车板铝合金的结晶相[J]. 东北大学学报(自然科学版), 2005, 26(11): 1070)
[17] Meng Y, Cui J Z, Zhao Z H, et al.Effect of vanadium on the microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr-Ti alloy of 6XXX series[J]. J. Alloys Comp., 2013, 573: 102
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!