Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (9): 650-658    DOI: 10.11901/1005.3093.2016.648
ARTICLES Current Issue | Archive | Adv Search |
Effect of Quenching Process on Microstructure of a HSLA Steel
Ting YANG, Hang SU(), Xiaobing LUO, Feng CHAI, Zhengyan ZHANG
Department of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081, China
Cite this article: 

Ting YANG, Hang SU, Xiaobing LUO, Feng CHAI, Zhengyan ZHANG. Effect of Quenching Process on Microstructure of a HSLA Steel. Chinese Journal of Materials Research, 2017, 31(9): 650-658.

Download:  HTML  PDF(2164KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of quenching cooling rates on microstructure of a high -strength low-alloy (HSLA) steel plate of 35 mm in thickness was investigated by the finite element software ABAQUS, Formastor thermal dilatometer, metalloscope, TEM and EBSD. The results show that the quenching cooling rate has significant effect on the microstructure and mechanical properties within the near surface band from the surface to the depth 8 mm of the steel plate. With the increase of quenching cooling rate, the amount of lath-like microstructure, the density of dislocation and low misorientation angle boundary have significant increased, and the width of lathes is markedly refined, leading to the obviously increase of the hardness of the band near the surface. With the increase of quenching cooling rate, there were no significant difference on the hardness, the size of lathes, grain boundary characters and MA constituent of the band from the quarter depth to the center of the steel plates. The ABAQUS simulation result is in accordance with the distribution of the hardness and microstructure of steel plates. The distribution of the cooling rate on the cross-section of steel plates determine the microstructure transition types and features.

Key words:  metallic materials      HSLA steel      quenching cooling rate      microstructure     
Received:  07 November 2016     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.648     OR     https://www.cjmr.org/EN/Y2017/V31/I9/650

Component C Si Mn S P Ni Cr Cu Nb Mo
Content ≤0.06 0.3 0.6 ≤0.005 ≤0.015 2.0 1.0 1.5 0.02 0.24
Table 1  Chemical composition of the test HSLA steel(mass fraction, %)
Temperature/℃ 400 450 500 550 600 650 700 750 800 850 900
Specific heat
/(Jkg-1-1)
628 661.4 701.2 751.4 801.5 860 1102.5 860 801.5 835 661.4
Thermal conductivity
/(Wm-1-1)
46.5 43.4 41 39.3 37.6 36 33.9 31.8 30.1 27.6 27.2
Table 2  Thermal physical parameters in simulation of quenching
Fig.1  CCT curve of the tested steel
Fig.2  Microstructure of the CCT tested samples at different cooling rates (a) 0.1℃/s; (b) 0.8℃/s; (c) 16.2℃/s; (d) 40.5℃/s
Fig.3  Average cooling rate of 35 mm thick steel plates between 400℃~600℃ at different sections
Fig.4  Vickers hardness of steel plates in cross-section under different cooling conditions
Fig.5  Microstructure of steel plates at different sections under different cooling conditions (a, b, c) correspond to the surface、1/4 and the core of steel plate cooling by oil; (d, e, f) correspond to the surface、1/4 and the core of steel plate cooling by water; (g, h, i) correspond to the surface、1/4 and the core of steel plate cooling by ice salt water
Fig.6  TEM images at the surface and the core of steel plates under different cooling condition (a, b, c) correspond to the surface of steel plate cooling by oil, water, ice salt water respectively; (d, e, f) correspond to the core of steel plate cooling by oil, water, ice salt water respectively
Fig.7  Average width of lath at the surface and the core of steel plates under different cooling conditions
Fig.8  Boundary map of the surface and the core of steel plates under different cooling conditions (a, b, c) correspond to the surface of steel plate cooling by oil, water, ice salt water respectively; (d, e, f) correspond to the core of steel plate cooling by oil, water, ice salt water respectively; (The low contrast and high-contrast lines indicate the boundaries with misorientations of 2°~15°and higher than 15°, respectively)
Fig.9  Effective grain size of the surface and the core of steel plates under different cooling conditions
Fig.10  Colored corrosion map of steel plates at different sections under different cooling conditions (a, b, c) correspond to the surface、1/4 and the core of steel plate cooling by oil; (d, e, f) correspond to the surface、1/4 and the core of steel plate cooling by water; (g, h, i) correspond to the surface、1/4 and the core of steel plate cooling by ice salt water
Fig.11  Volume percent of MA constituent at different sections of steel plates under different cooling conditions
Fig.12  Size distribution of MA constituent at different sections of steel plates under different cooling conditions
[1] Wang R F, Zhao C Q, Jiang Y, et al.United States Marine Evolution and Analysis of Plate Specifications[J]. Development and Application of Materials, 2012, 27(4): 80(王任甫, 赵彩琴, 蒋颖, 等. 美国舰船用钢板规范的演变与分析[J], 材料开发与应用, 2012, 27(4): 80)
[2] Tang X S.Demand situation and prospective analysis of steels for offshore engineering[J]. Marine Equipment/Materials & Marketing, 2010, (1): 10(唐学生. 海洋工程用钢需求现状及前景分析[J]. 船舶物资与市场, 2010, (1): 10)
[3] J. P. Christein, J. L. Warren.Implementation of HSLA-100 Steel in Aircraft Construction-CVN74[J]. Journal of Ship Production, 1995, 11(2): 97
[4] Wang X M, Zhou G F, Yang S W, et al.Aging of ultra-low carbon steels bearing various contents of copper[J]. Acta Matellrugica Sinica, 2000, 36(2): 113(王学敏, 周桂峰, 杨善武, 等. 不同Cu含量超低碳钢的时效行为[J], 金属学报, 2000, 36(2): 113)
[5] S. S. G. Banadkouki, D.Yu, D. P. Dunne. Age Hardening in a Cu-bearing High Strength Low Alloy Steel[J]. ISIJ International, 1996, 36(1), 61
[6] Kangying Zhu, Olivier Bouaziz, Carla Oberbillig, et al, An approach to define the effective lath size controlling yield strength of bainite[J]. Materials Science and Engineering A, 2010, 527(24-25): 6614
[7] S. Morito, H. Tanaka, R. Konishi.The morphology and crystallography of lath martensite in Fe-C alloys[J]. Acta Materialia, 2003, 51(6): 1789
[8] Y. Li, T. N. Baker.Effect of the morphology of the martensite-austenite phase on fracture of the weld heat affected zone in vanadium and niobium microalloyed steels[J]. Mater Sci Technol, 2010, 26(9): 1029
[9] Niu J, Liu Y L, Qi L H, et al.Microstructure and properties of X80 steels thick plate after sifferent quenching and tempering treatments[J]. Materials for Mechanical Engineering, 2011, 35(6): 16(牛靖, 刘迎来, 齐华丽, 等. 不同调质热处理X80钢厚板的组织与性能[J], 机械工程材料, 2011, 35(6): 16)
[10] F. Matsuda, K. Ikeuchi, J. Liao.Effect of weld thermal cycles on the HAZ thoughness of SQV-ZA pressure vessel steel[A]. Trends in welding Research, 4th International Conference[C]. Catlimburg Tennesence, USA, 1996
[11] Ma H X.Microstructure and properties of coarse grained HAZ of high grade pileline steels[D].Qinhuangdao: Yanshan University, 2013)(马红霞, 高级管线钢焊接粗晶区组织与性能研究[D]. 秦皇岛: 燕山大学, 2013)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!