|
|
Phase Transformation during Metling and Solidifying Process of Homogenized Superalloy GH3625 |
Yutian DING, Zhengyi DOU( ), Yubi GAO, Xin GAO, Haifeng LI, Dexue LIU |
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China |
|
Cite this article:
Yutian DING, Zhengyi DOU, Yubi GAO, Xin GAO, Haifeng LI, Dexue LIU. Phase Transformation during Metling and Solidifying Process of Homogenized Superalloy GH3625. Chinese Journal of Materials Research, 2017, 31(11): 853-859.
|
Abstract The microstructure evolution, and the dissolution and precipitation of the main phase of the homogenized superalloy GH3625 during melting and solidifying process were investigated by means of differential scanning calorimetry (DSC), confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that the twostep homogenization process is effective for eliminating the laves phase of low-melting point and the segregation in micro-scale for alloying elements of the superalloy GH3625; The initial melting temperature of the homogenized superalloy GH3625 is obviously improved, and the melting occurs firstly in the regions such as grain boundary, surface, shrinkage cavity and carbide (NbC) etc.. The solidification process of the alloy GH3625 can be divided into three stages, and which correspond to mainly the crystallization reactions such as L→γ, L→γ+MC and L→γ+laves. The nucleation of γ phase belong to heterogeneous nucleation, so that solute atoms easily segregate at grain boundaries, which in the dendrites inevitably formed elemental segregation and phase segregation. The precipitation type of the low melting point laves phase is mainly related to the cooling rates.
|
Received: 25 October 2016
|
Fund: Supported by National Natural Science Foundation of China (No. 51661019) and Major Science and Technology Projects in Gansu Province (No. 145RTSA004) |
[1] | Guo J T.Materials Science and Engineering for Superalloys [M]. Beijing: Science Press, 2008(郭建亭. 高温合金材料学 [M]. 北京: 科学出版社, 2008) | [2] | Penkalla H J, Wosik J, Czyrska-Filemonowicz A.Quantitative microstructural characterisation of Ni-base superalloys[J]. Mater. Chem. Phys., 2003, 81(2-3):417 | [3] | Li X H, Zhang Y, Hou X Q, et al.Effect of homogenization temperatures on the microstructure and stress-rupture properties of K4169 alloy[J]. Rare Met. Mater. Eng., 2014, 43(1): 199(李相辉, 张勇, 侯学勤等. 均匀化温度对K4169合金显微组织和持久性能的影响[J]. 稀有金属材料与工程, 2014, 43(1): 199) | [4] | Miao Z J, Shan A D, Wu Y B, et al.Quantitative analysis of homogenization treatment of INCONEL718 superalloy[J]. T. Nonferr. Metal. Soc., 2011, 21(5): 1009 | [5] | Wang L, Dong J X, Tian Y L, et al.Microsegregation and Rayleigh number variation during the solidification of superalloy Inconel 718[J]. INT. J. Min. Met. Mater., 2008, 15(5): 594 | [6] | Tian Y L, Wang L, Dong J X, et al.Microsegregation of GH742 ingot and the element distribution during homogenizing treatment[J]. Rare Met. Mater. Eng., 2006, 35(8): 1315(田玉亮, 王玲, 董建新等. GH742 铸锭偏析及均匀化过程中元素分布规律[J]. 稀有金属材料与工程, 2006, 35(8): 1315) | [7] | Liang G, Zhu L Y, Wang C Q, et al.In situ observation of δ→γ transformation in the stainless steel AISI 304[J]. Acta Metall. Sin., 2007, 43: 119(梁高, 朱丽业, 王成全等. AISI 304不锈钢中δ→γ相变的原位观察[J]. 金属学报, 2007, 43: 119) | [8] | Aminorroaya S, Dippenaar R.A novel approach to simulate segregation at the centerline of continuously cast steel using laser-scanning confocal microscopy[J]. J. Microsc., 2007, 227(2): 87 | [9] | Shibata H, Emi T.In-site observation of engulfment and pushing of nonmetallic inclusion in steel melt by advancing melt/solid interface[J]. ISIJ. INT.,1998, 38(2): 149 | [10] | Huang Q J, Liu G Q.Application of microsoft word in quantitative microstructure analysis[J]. Chinese Journal of Stereology and Image Analysis. 2002, 7(3): 182(黄启今, 刘国权. 通用软件Microsoft Word 在显微组织定量分析中的应用[J]. 中国体视学与图像分析, 2002, 7(3): 182) | [11] | Cowen C J, Danielson P E, Jablonski P D.The microstructural evolution of Inconel alloy 740 during solution treatment, aging, and exposure at 760℃[J]. J. Mater. Eng. and Perform., 2011, 20(6): 1078 | [12] | Pan X L, Wang B, Sun W R, et al.Effect of homogenizing treatment on the hot deformation of GH742 alloy[J]. Acta Metall. Sin., 2012(11): 1403(潘晓林, 汪波, 孙文儒等. 均匀化处理对GH742合金热变形行为的影响[J]. 金属学报, 2012(11): 1403) | [13] | Semiatin S L, Kramb R C, Turner R E, et al.Analysis of the homogenization of a nickel-base superalloy[J]. Scripta Mater., 2004, 51(6): 491 | [14] | Ning L K, Zheng Z, Jin T, et al.Effect of heat treatments on the microstructure and property of a new nickel base single crystal superalloy[J]. Acta Metall. Sin., 2014, 50(8): 1011(宁礼奎, 郑志, 金涛等. 热处理对一种新型镍基单晶高温合金组织与性能的影响[J]. 金属学报, 2014, 50(8): 1011) | [15] | Liang G F, Wang C Q, Fang Y.In situ observation on movement and aggregation of inclusion in solid-liquid mush zone during melting of stainless steel AISI 304[J]. Acta Metall. Sin., 2006, 42(7): 708(梁高飞, 王成全, 方园. AISI 304不锈钢熔化过程中夹杂物在固-液糊状区漂移与聚集行为的原位观察[J]. 金属学报, 2006, 42(7): 708) | [16] | Hu G X, Cai X. Materials Science Foundation, Materials Science Foundation(Third Edition) [M]. Shanghai: Shanghai Jiaotong University Press, 2000(胡赓祥, 蔡询. 材料科学基础(第三版)[M]. 上海: 上海交通大学出版社, 2000 | [17] | Miao Z J.Study on solidification segregation and homogenization process of IN718 series superalloy [D]. Shanghai: Shanghai Jiaotong University, 2011(繆竹骏. IN718系列高温合金凝固偏析及均匀化处理工艺研究[D]. 上海: 上海交通大学, 2011) | [18] | M. Flemings.Solidification Processing[M]. NewYork: McGraw-Hill, 1974 | [19] | Cao G X, Zhang M C, Dong J X, et al.Effects of Nb content variations on precipitates evolution of GH4169 ingots during their solidification and homogenization processes[J]. Rare Met. Mater. Eng., 2014, 43(1): 103(曹国鑫, 张麦仓, 董建新等. Nb含量对 GH4169 合金钢锭凝固及均匀化过程相演化规律的影响[J]. 稀有金属材料与工程, 2014, 43(1): 103) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|