Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (9): 641-649    DOI: 10.11901/1005.3093.2016.431
ARTICLES Current Issue | Archive | Adv Search |
Effect of Nucleation and Growth of Pores, and Solidification Mode on Pore Structure and Distribution of Lotus-type Porous Cu
Fei LI1, Zaijiu LI2,3(), Juanjuan TIAN3, Ming XIE3, Shaowu ZHU3, Jialin CHEN3
1 City College, Kunming University of Science and Technology, Kunming 650051, China
2 Aviation College, Kunming University of Science and Technology, Kunming 650500, China
3 State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China
Cite this article: 

Fei LI, Zaijiu LI, Juanjuan TIAN, Ming XIE, Shaowu ZHU, Jialin CHEN. Effect of Nucleation and Growth of Pores, and Solidification Mode on Pore Structure and Distribution of Lotus-type Porous Cu. Chinese Journal of Materials Research, 2017, 31(9): 641-649.

Download:  HTML  PDF(1554KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of pore nucleation,pore growth and solidification mode of matrix on pore structure and distribution of lotus-type porous Cu were investigated. It is difficult to obtain an ordered pore structure when the matrix is a region of columnar transition. An ordered pore structure could be obtained only when the matrix transforms to columnar grains with increase of pore length and circularity. The pore distribution moved from the grain boundaries to the interior of grain with increasing gas pressure. The average pore diameter decreased and the pore density increased due to decrease of activation energy and increased rate of nucleus formation. Due to slight depressions at grain boundaries regions at the solid/liquid interface, the pore nucleation is favored at grain boundaries and thus the average pore diameter in the grain boundaries is larger than that of in the grains.

Key words:  metallic materials      Gasar      lotus-type porous Cu      solidification model      pore nucleation      pore growth     
Received:  22 July 2016     
ZTFLH:  TG146  
Fund: Supported by the Fund of the Collaborative Innovation Centre of Rare and Precious Metals Advanced Materials (No.2014XT03) and the Fund of the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals (No.SKL-SPM-201545)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.431     OR     https://www.cjmr.org/EN/Y2017/V31/I9/641

Fig.1  A schematic of the fabrication apparatus for lotus-type porous copper
Sample PH2
/MPa
PAr
/MPa
ΔT
/K
ε ε' d'
m
2H0Ar 0.2 0 200 49 51 1771
2H2Ar 0.2 0.2 200 37 23 874
4H2Ar 0.4 0.2 200 34 28 272
Table 1  Gasar processing parameters and corresponding porosity and pore diameter of the samples
Fig.2  Optical micrographs on the cross section (a) and the longitudinal section (b) of lotus-type porous copper
Fig.3  Effect of solidification model on pore structure of sample 2H0Ar
Fig.4  Effect of gas pressures P on pore number density n of lotus-type porous Cu
Fig.5  Effect of gas pressures P on pore structure and distribution of lotus-type porous Cu
Fig.6  Schematic drawing of pore nucleation mode in molten metal: homogeneous (a) and heterogeneous (b) (c) nucleation
The model of bubble nucleation The radius of critical nucleus The activation energy
and the shape factor
Homogeneous bubble
nucleation
rn=2σL-G3(PH2+PAr) ΔGn=19?ΔGi(rn)
Heterogeneous bubble nucleation Planar interfaces r'n=2σL-G3(PH2+PAr) ΔGn'=19?ΔGi(r'n)?f(θ)
f(θ)=(2+cosθ)(1-cosθ)24
Pits or cracks r''n=2σL-G3(PH2+PAr) ΔGn''=ΔG''?f(θ)=19?ΔGi(r''n)?f(θγ)
f(θ,γ)=1-sin(θ+γ2)4sin(γ2)?2sin(γ2)-cosθ1+sin(θ+γ2)
Table 2  Radius of critical nucleus, the activation energy and the shape factor for the models of bubble nucleation
Fig.7  Calculated results of f(θ), f(θ,γ) (a) and ΔG (b) under different nucleation models
Metal ΔT / K ρLgh / Pa Pvap/Pa θ / o σL-G / (Jm-2)
Cu 200 7840 1.28 134 1.31
Table 3  Parameters of pore nucleation for calculation
Fig.8  Solid/liquid interface morphology and the nucleation of pores
Fig.9  Effect of PH2, PAr and ΔT on growth of pores of lotus-type porous Cu
[1] Shapovalov V I.Method of manufacture of porous articles [P]. U.S. A, 5181549, 1993
[2] Li Y G, Jin Q L, Yang T W, et al.Influence of solidification rate on pore structure of lotus-type porous metals[J]. Chin. J. Mater. Res., 2014, 28(6): 476(李雨耕, 金青林, 杨天武等. 凝固速率对藕状多孔金属结构的影响[J]. 材料研究学报, 2014, 28(6): 476)
[3] Liu Y, Li Y X, Wan J, et al.Evaluation of porosity in lotus-type porous magnesium fabricated by metal/gas eutectic unidirectional solidification[J]. Mater. Sci. Eng., 2005, A402: 47
[4] Li Z J, Jin Q L, Yang T W, et al.Fabrication of lotus-type porous Cu-Zn alloys with the Gasar continuous casting process[J]. Acta Metall. Sin., 2013, 49(6): 757(李再久,金青林,杨天武等. Gasar连铸工艺制备藕状多孔Cu-Zn合金[J]. 金属学报, 2013, 49(6): 757)
[5] Xie J X, Liu X H, Liu X F, et al.Fabrication and characterization of lotus-type porous pure copper bar[J]. Chin. J. Nonferrous Met., 2005, 15(11): 1869(谢建新, 刘新华, 刘雪峰. 藕状多孔纯铜棒的制备与表针[J]. 中国有色金属学报, 2005, 15(11): 1869)
[6] Li Z J, Jin Q L, Yang T W, et al.A thermodynamic model for directional solidification of metal-hydrogen eutectic[J]. Acta Metall. Sin., 2014, 50(4): 507(李再久, 金青林, 杨天武等. 金属-氢共晶定向凝固热力学模型[J]. 金属学报, 2014, 50(4): 507)
[7] Liu X N, Li Y X, Chen X.Foam stability in gas injection foaming processing[J]. J. Mater. Sci., 2010, 45(23): 6481
[8] Hyun S K, Murakami K, Nakajima H.Anisotropic mechanical properties of porous copper fabricated by unidirectional solidification[J]. Mater. Sci. Eng., 2001, A299: 241
[9] Simone A E, Gibson L J.The tensile strength of porous copper made by the Gasar process[J]. Acta Mater., 1996, 44(4): 1437
[10] Nakajima H.Fabrication, properties and application of porous metals with directional pores[J]. Prog. Mater. Sci., 2007, 52: 1091
[11] Hyun S K, Nakajima H.Anisotropic compressive properties of porous copper fabricated by unidirectional solidification[J]. Mater. Sci. Eng., 2003, A304: 258
[12] Chen L T, Zhang H W, Liu Y.Experimental research on heat transfer performance of directionally solidified porous copper heat sink[J]. Acta Metall. Sin., 2012, 48(3): 329(陈刘涛, 张华伟, 刘源等. 定向凝固多孔Cu热沉传热性能的实验研究[J].金属学报, 2012, 48(3): 329)
[13] Ogushi T, Chiba H, Nakajima H, et al.Measurement and analysis of effective thermal conductivities of lotus-type porous copper[J]. J. Appl. Phys., 2004, 95(10): 5843
[14] Xie Z K, Ikeda T, Okuda Y, et al.Sound absorption characteristics of lotus-type porous copper fabricated by unidirectional solidification[J]. Mater. Sci. Eng., 2004, A386: 390
[15] Liu Y, Li Y X, Liu R F, et al.Theoretical analysis on effect of transference velocity on structure of porous metals fabricated by continuous casting GASAR process[J]. Acta Metall. Sin., 2010, 46(2): 129(刘源, 李言祥, 刘润发等. 连铸法GASAR工艺中抽拉速率影响的理论分析[J]. 金属学报, 2010, 46(2): 129)
[16] Liu Y, Li Y X, Zhang H W.Effect of Gasar processing parameters on structure of lotus-type porous magnesium[J], Rare Metal Mater. Eng., 2005, 34(7): 1128(刘源, 李言祥, 张华伟. 金属/气体共晶定向凝固工艺参数对藕状多孔金属镁结构的影响[J]. 稀有金属材料与工程, 2005, 34(7): 1128)
[17] Liu Y, Li Y X.Theoretical analysis of bubble nucleation in Gasar materials[J]. Trans. Nonferrous Met. Soc. China, 2003, 13(4): 830
[18] Zhang H W, Li Y X.Study on bubble nucleation in liquid metal[J]. Acta phy. Sin., 2007, 56(8): 4864(张华伟, 李言祥. 金属熔体中气泡形核的理论分析[J]. 物理学报, 2007, 56(8): 4864)
[19] Zhang H W, Li Y X, Liu Y.Hydrogen solubility in pure metals for Gasar process[J]. Acta Metall. Sin., 2007, 43(2): 113(张华伟, 李言祥, 刘源. 氢在Gasar工艺常用纯金属中的溶解度[J]. 金属学报, 2007, 43(2): 113)
[20] Jiang G R, Li Y X, Liu Y.Influence of solidification mode on pore structure of directionally solidified porous Cu-Mn alloy[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 88
[21] Kurz W, Fisher D J.Fundamentals of solidification[M]. Brookfield: Trans Tech Publications, 1989
[22] Smithells C J.Smithells Metals Reference Book [M]. Boston: Reed Educational and Professional Publishing Ltd, 1992
[23] Kato E.Pore nucleation solidifying high-purity copper[J]. Metall. Mater. Trans., 1999, 30A(9): 2449
[24] Fredriksson H, Svensson I.On the mechanism of pore nucleation in metals[J]. Metall. Trans., 1976, B7(4): 599
[25] Tiwari S N, Beech J.Origin of gas bubbles in aluminum[J]. Met. Sci., 1978, 12(8): 356
[26] Cui Z Q.Metallurgy and Heat Treatment [M]. Beijing: China Machine Press, 2000(崔忠圻. 金属学与热处理[M]. 北京: 机械工业出版社,2000)
[27] Yamamura S, Shiota H, Murakami K, et al.Evaluation of porosity in porous copper fabricated by unidirectional solidification under pressurized hydrogen[J]. Mater. Sci. Eng., 2001, A318: 137
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!