|
|
Effect of Quench Rate on the High Cycle Fatigue Property of 60Si2CrVAT Spring Steels |
Lei LEI1,2,4,Yilong LIANG1,2,4( ),Yun JIANG1,2,3,Jun XU1,2,4,Ming YANG1,2,4 |
1 College of Materials and Metallurgy,University of Guizhou,Guiyang 550025,China 2 Key Laboratory for Material Structure and Strength of Guizhou Province,Guiyang 550025,China 3 College of Mechanical Engineering,University of Guizhou,Guiyang 550025,China 4 National Local Co-construction Engineering Laboratory for High Performance Metal Structure Material and Manufacture Technology,Guiyang 550025,China |
|
Cite this article:
Lei LEI,Yilong LIANG,Yun JIANG,Jun XU,Ming YANG. Effect of Quench Rate on the High Cycle Fatigue Property of 60Si2CrVAT Spring Steels. Chinese Journal of Materials Research, 2017, 31(1): 65-73.
|
Abstract The effect of quench with two quenching media of 13% polyaleneglycol (PAG) and oil respectively on the high cycle fatigue behavior of spring steel 60Si2CrVAT was studied by applying alternatively uniaxial tension and compression. While the fatigue fractograph,source composition,microstructural evolution of the steel were examined by means of SEM,TEM and EBSD. The results indicate that the fatigue limit for the steel quenched with 13%PAG is 781.5 MPa; however that with oil is 714.0 MPa. Analysis results of fractograph show that fatigue damages mostly originate from the internal inclusions and carbides,while granular bright facets (GBF) are observed in the vicinity around the inclusions. Further investigation indicates that the stress intensity factor range at crack initiation site of inclusion ?Kinc trends to decrease gradually with increasing the fatigue life Nf,while the stress factor range at GBF boundary ?KGBF keeps almost constant with varying Nf and the ?KGBF for the steel quenched with oil is smaller than that with 13% PAG. From microstructural observation results,it suggests that the beneficial effect on the fatigue property of the steel quenched with 13%PAG is caused by that there existed much more nano-twins,much finer individual lath and block,as well as finer carbides uniformly distributed in martensitic matrix for the steel quenched with 13% PAG rather than those with oil.
|
Received: 07 March 2016
|
Fund: Supported by National Natural Science Foundation of China (No.51461006), Guiyang Science and Technology Support Program (No.2013101) and Key Projects in Guizhou Province (No.20146012) and Key Projects in Guizhou Province (No.JZ[2014]2003) |
[1] | Fu S H, Hui W J, Liu Z H, et al.Fatigue fracture behaviour of a medium-carbon 2000 MPa level high strength spring steel[J]. J. Iron Steel Res., 2006, 18: 30 | [1] | (付书红, 惠卫军, 刘中华等. 一种2000 MPa级中碳高强度弹簧钢的疲劳破坏行为[J]. 钢铁研究学报, 2006, 18: 30) | [2] | Zhao H M, Hui W J, Nie Y H, et al.Very high cycle fatigue fracture behavior of high strength spring steel 60Si2CrVA[J]. Chin. J. Mater. Res., 2008, 22: 526 | [2] | (赵海民, 惠卫军, 聂义宏等. 60Si2CrVA高强度弹簧钢的超高周疲劳破坏行为[J]. 材料研究学报, 2008, 22: 526) | [3] | Wang K, Yin J, Gu W J, et al.Effect of heat treatment on structure and mechanical properties of spring steel 60Si2CrVAT[J]. Spec. Steel, 2007, 28: 56 | [3] | (王凯, 殷匠, 顾文俊等. 热处理对60Si2CrVAT弹簧钢组织和力学性能的影响[J]. 特殊钢, 2007, 28: 56) | [4] | Li Q Z, Gao G H, Zhou L X, et al.A test for optimization of heat treatment process of high strength spring steel 60Si2CrVAT[J]. Spec. Steel, 2012, 33: 49 | [4] | (李秋志, 高国华, 周立新等. 高强度弹簧钢60Si2CrVAT热处理工艺优化试验[J]. 特殊钢, 2012, 33: 49) | [5] | Wu H L, Wang F M, Li C R, et al.Optimization of heat treatment process of 60Si2CrVAT spring steel for high-speed trains[J]. Trans. Mater. Heat Treat., 2011, 32: 35 | [5] | (吴华林, 王福明, 李长荣等. 提速列车用弹簧钢60Si2CrVAT的热处理工艺优化[J]. 材料热处理学报, 2011, 32: 35) | [6] | Li X Q, Zhang Y X, Guo J P.Study on the quenching of spring steels used polyglycol solution[J]. Heat Treat. Metals, 1992, (11): 3 | [6] | (黎秀球, 张亚信, 郭建平. 新型淬火介质在弹簧钢热处理中的应用研究[J]. 金属热处理, 1992, (11): 3) | [7] | Meng X Y, Qin L F.Application of PAG in heat treatment for 50CrVA leaf spring[J]. Hot Work. Technol., 2012, 41: 187 | [7] | (孟宪芸, 秦立富. PAG在50CrVA钢板弹簧热处理中的应用[J]. 热加工工艺, 2012, 41: 187) | [8] | Ma M T.The effect of PAG on the property of spring steel[J]. Autom. Technol. Mater., 1995, (2): 13 | [8] | (马鸣图. PAG类淬火介质对弹簧钢性能的影响[J]. 汽车工艺与材料, 1995, (2): 13) | [9] | Fan J L, Guo X L, Wu C W, et al.Effect of heat treatments on fatigue properties of FV520B steel using infrared thermography[J]. Chin. J. Mater. Res., 2012, 26: 61 | [9] | (樊俊铃, 郭杏林, 吴承伟等. 热处理对FV520B钢疲劳性能的影响[J]. 材料研究学报, 2012, 26: 61) | [10] | Murakami Y, Nomoto T, Ueda T, et al.On the mechanism of fatigue failure in the super-long life regime (N > 107 cycles). Part 1: influence of hydrogen trapped by inclusions[J]. Fatigue Fract. Eng. Mater. Struct., 2000, 23: 893 | [11] | Tanaka K, Akiniwa Y.Fatigue crack propagation behaviour derived from S-N data in very high cycle regime[J]. Fatigue Fract. Eng. Mater. Struct., 2002, 25: 775 | [12] | Lu L T, Shiozawa K, Morii Y, et al.Fatigue fracture process of a high-carbon-chromium bearing steel in ultra-long life regime[J]. Acta. Metall. Sin., 2005, 41: 1066 | [12] | (鲁连涛, 盐泽和章, 森井佑一等. 高碳铬轴承钢超长寿命疲劳破坏过程的研究[J]. 金属学报, 2005, 41: 1066) | [13] | Murakami Y, Kodama S, Konuma S.Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions[J]. Int. J. Fatigue, 1989, 11: 291 | [14] | Sakai T, Sato Y, Oguma N.Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue[J]. Fatigue Fract. Eng. Mater. Struct., 2002, 25: 765 | [15] | Zhang J M, Yang Z G, Li S X, et al.Ultra high cycle fatigue behavior of automotive high strength spring steels 54SiV6 and 54SiCr6[J]. Acta. Metall. Sin., 2006, 42: 259 | [15] | (张继明, 杨振国, 李守新等. 汽车用高强度弹簧钢54SiCrV6和54SiCr6的超高周疲劳行为[J]. 金属学报, 2006, 42: 259) | [16] | Nie Y H, Hui W J, Fu W T, et al.Ultra high cycle fatigue behavior of a medium-carbon high strength spring steel NHS1[J]. Acta. Metall. Sin., 2007, 43: 1031 | [16] | (聂义宏, 惠卫军, 傅万堂等. 中碳强度弹簧钢NHS1超高周疲劳破坏行为[J]. 金属学报, 2007, 43: 1031) | [17] | Zhang Y J, Hui W J, Xiang J Z, et al.Effect of grain size on ultra-high-cycle fatigue properties of 42CrMoVNb steel[J]. Acta. Metall. Sin., 2009, 45: 880 | [17] | (张永健, 惠卫军, 项金钟等. 晶粒尺寸对42CrMoVNb钢超高周疲劳性能的影响[J]. 金属学报, 2009, 45: 880) | [18] | Hong Y S, Fang B.Microscopic process and description for the initiation and propagation of short fatigue cracks[J]. Adv. Mech., 1993, 23: 468 | [18] | (洪友士, 方飚. 疲劳短裂纹萌生及发展的细观过程和理论[J]. 力学进展, 1993, 23: 468) | [19] | Wang X S, Liang F, Zeng Y P, et al.SEM in situ observations to the effects of inclusions on initiation and propagation of the low cyclic fatigue crack in super strength steel[J]. Acta. Metall. Sin., 2005, 41: 1272 | [19] | (王习术, 梁锋, 曾燕屏等. 夹杂物对超高强度钢低周疲劳裂纹萌生及扩展影响的原位观测[J]. 金属学报, 2005, 41: 1272) | [20] | Stormvinter A, Hedstr?m P, Borgenstam A.A transmission electron microscopy study of plate martensite formation in high-carbon low alloy steels[J]. J. Mater. Sci. Technol., 2013, 29: 373 | [21] | Tomita Y, Okabayashi K.Effect of quench rate on microstructure and tensile properties of ALSL 4320 and 4340 steels[J]. Metall. Trans. A, 1987, 18: 115 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|