Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (4): 263-268    DOI: 10.11901/1005.3093.2015.694
Orginal Article Current Issue | Archive | Adv Search |
Oxidation Behavior of 18CrNb Ferritic Stainless Steel at Elevated Temperatures
LI Xin1,2, LIU Houlong1, BI Hongyun2, CHEN Liqing1,**()
1. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2. State Key Laboratory of Development and Application Technology of Automotive Steels, Baosteel Group, Shanghai 201900, China
Cite this article: 

LI Xin, LIU Houlong, BI Hongyun, CHEN Liqing. Oxidation Behavior of 18CrNb Ferritic Stainless Steel at Elevated Temperatures. Chinese Journal of Materials Research, 2016, 30(4): 263-268.

Download:  HTML  PDF(4033KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

18CrNb is a kind of ferritic stainless steel and widely used as parts at the hot end of automobile exhaust system due to its good formability, high temperature strength and oxidation resistance. In this paper, the oxidation of 18CrNb steel in a temperature ranging from 700℃ to 1000℃ was studied through continuous oxidation behavior test. The oxide scale was then characterized by XRD, SEM and EDS, while the oxidation dynamic curve of this steel was plotted based on the weight-gain data after oxidation. The results indicate that 18CrNb steel has excellent oxidation resistance at temperatures lower than 900℃ due to the formation of continuous and dense Cr-rich oxide scale. When the temperature rises up to 950℃, the oxide scale turn to be complex, of which the outer portion composed of Cr-rich Cr-Mn oxide, Mn-rich Mn-Cr oxide, Fe oxide and pure iron oxide; the inner portion composed of Fe-rich Fe/Cr oxide; thereby the scale became loose leading to breakaway oxidation. According to the results of this work, 18CrNb is not suitable for application at temperatures above 950℃.

Key words:  metallic materials      18CrNb      ferritic stainless steel      oxidation resistance      breakaway oxidation     
Received:  03 December 2015     
ZTFLH:  TG142  
Fund: Supported by the Research Fund from Science and Technology Commission of Shanghai Municipality No.15XD1520100
About author:  To whom correspondence should be addressed, Tel: (024) 83681819, E-mail: lqchen@mail.neu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.694     OR     https://www.cjmr.org/EN/Y2016/V30/I4/263

C Si Mn P S Cr Nb Ti N Fe
0.009 0.47 0.27 0.025 0.002 17.81 0.463 0.17 0.0085 Bal.
Table 1  Chemical Composition of 18CrNb ferritic stainless steel (%, mass fraction)
Fig.1  Oxidation kinetic curves of ferritic stainless steel 18CrNb oxidized at different temperatures, (a) 700-900℃, (b) 950-1000℃
T/℃ kp/ g2cm-4s-1 n Q / (kJ/mol)
700 1.4 × 10-14 2.25 237
800 1.1 × 10-13 2.18 242
900 2.4 × 10-12 2.24 235
950 5.1 × 10-12 2.19 237
1000 5.3 × 10-10 2.27 200
Table 2  Values of kp, n, and Q of stainless steel 18CrNb at different temperatures
Fig.2  XRD spectra of oxidation products on the stainless steel 18CrNb oxidized at different temperatures
Fig.3  SEM images of the cross section and surface (inset) of oxide layers in 18CrNb stainless steel oxidized at 700℃ (a), 800℃ (b), 900℃ (c) and EDS analysis of nodular oxide in Fig.3c (inset) (d)
Fig.4  Cross-sectional morphologies of the oxide layers in 18CrNb oxidized at different temperatures (a, b) 950℃, cross-section and oxide nearby the substrate; (c, d) 1000℃, cross-section and oxide nearby the substrate
Fig.5  SEM image (a) and EDS analysis (b) of the tuberculate oxide in 18CrNb stainless steel oxidized at 1000℃ for 100 h
1 X. Li, J. Shu, L. Q Chen, H. Y. Bi, Effect of cerium on high-temperature oxidation resistance of 00Cr17NbTi ferritic stainless steel, Acta Metallurgica Sinica (English Letters), 27(3), 501(2014)
doi: 10.1007/s40195-014-0079-6
2 T. L. Liu, L. J. Chen, H. Y. Bi, X. Che, Effect of Mo on high-temperature fatigue behavior of 15CrNbTi ferritic stainless steel, Acta Metallurgica Sinica (English Letters), 27(3), 452(2014)
doi: 10.1007/s40195-014-0064-0
3 Y. Inoue, M. Kikuchi, Present and future trends of stainless steel for automotive exhaust system, Nippon Steel Technical Report, (88), 62(2003)
4 Y. T. Chiu, C. K. Lin, Effects of Nb and W additions on high-temperature creep properties of ferritic stainless steel for solid oxide fuel cell interconnect, Journal of Power Sources, 198(1), 149(2012)
5 N. Fujita, K. Ohmura, A. Yamamoto, Changes of microstructures and high temperature properties during high temperature service of Niobium added ferritic stainless steels, Materials Science and Engineering A, 351(1-2), 272(2003)
doi: 10.1016/S0921-5093(02)00831-6
6 H. S. Seo, D. W. Yun, K. Y. Kim, Oxidation behavior of ferritic stainless steel containing Nb, Nb-Si and Nb-Ti for SOFC interconnect, International Journal of Hydrogen Energy, 38(5), 2432(2013)
doi: 10.1016/j.ijhydene.2012.12.073
7 H. Ali-löytty, P. Jussila, M. Valden, Optimization of the electrical properties of Ti-Nb stabilized ferritic stainless steel SOFC interconnect alloy upon high-temperature oxidation: the role of excess Nb on the interfacial oxidation at the oxide-metal interface, International Journal of Hydrogen Energy, 38(2), 1039(2013)
doi: 10.1016/j.ijhydene.2012.10.087
8 J. Rufner, P. Gannon, P. White, M. Deibert, S. Teintze, R. Smith, H. Chen, Oxidation behavior of stainless steel 430 and 441 at 800℃ in single (air/air) and dual atmosphere (air/hydrogen) exposures, International Journal of Hydrogen Energy, 33(4), 1392(2008)
doi: 10.1016/j.ijhydene.2007.12.067
9 Z. Y. Chen, L. J. Wang, F. S. Li, K. C. Chou, Z. H. Sun, The effects of temperature and oxygen pressure on the initial oxidation of stainless 441, International Journal of Hydrogen Energy, 39(19), 10303(2014)
10 V. Badin, E. Diamanti, P. Forêt, E. Darque-Ceretti, Water vapor oxidation of ferritic 441 and austenitic 316L stainless steel at 1000℃ for short duration, Procedia Materials Science, 9, 48(2015)
11 Yulai Xu, Xin Zhang, Lijun Fand, Jun Li, Xiaojiang Yu, Xueshan Xiao, Laizhu Jiang, Improved oxidation resistance of 15 wt.% Cr ferritic stainless steels containing 0.08-2.45 wt.% Al at 1000℃ in air, Corrosion Science, 100, 311(2015)
12 C. H. Xu, W. Gao, H. Gong, Oxidation behaviour of FeAl intermetallics.The effects of Y and/or Zr on isothermal oxidation kinetics, Intermetallics, 8, 769(2000)
doi: 10.1016/S0966-9795(00)00007-8
13 J. G. Grolig, J. Froitzheim, J.-E. Svensson, Coated stainless steel 441 as interconnect material for solid oxide fuel cells: Oxidation performance and chromium evaporation, Journal of Power Sources, 248, 1007(2014)
doi: 10.1016/j.jpowsour.2013.08.089
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!