Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (5): 372-378    DOI: 10.11901/1005.3093.2015.557
研究论文 Current Issue | Archive | Adv Search |
Microstructure and Mechanical Property of Fusion Weld Butt Joints of TA1/X80 Composite Plate with TiNi and NiCrMo Double-Transition Layers
WU Weigang1,**(), ZHANG Min2, DING Xu1, SHI Qianru2, JING Qiang2
1. College of Material and Engineering, Xi’an Aeronautical University, Xi’an 710077, China
2. College of Material Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
Cite this article: 

WU Weigang, ZHANG Min, DING Xu, SHI Qianru, JING Qiang. Microstructure and Mechanical Property of Fusion Weld Butt Joints of TA1/X80 Composite Plate with TiNi and NiCrMo Double-Transition Layers. Chinese Journal of Materials Research, 2016, 30(5): 372-378.

Download:  HTML  PDF(6365KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fusion weld of TA1/X80 composite plate was carried out by taking foils of TiNi, and NiCrMo as the double transition layer weld material. Then the microstructure, morphology, chemical and phase composition and mechanical properties of the weld metal were characterized by means of metallography, SEM, EDS, XRD. Results revealed that the weld seam with TA1/TiNi weld metal exhibited a microstructure with equiaxed grains, and the Ti content drastically descended along a line from TA1 side to TiNi side while Ni content gradual increases. The weld seam with TiNi/NiCrMo exhibited a dendritic microstructure and there existed a 40 μm wide transitional zone, and the Ti content rapidly reduced along a line from TiNi side to NiCrMo side, while Ni content decreased first and then restored, but Cr and Mo increased gradually. The weld seam of NiCrMo/X80 showed a mixed grain- and acicular-like microstructure, and the Fe content increased sharply at the interface. while the Ni content and Cr content reduced dramatically along a line from the NiCrMo side to the X80 side. The strength and toughness of welded joint are lower than that of the base metal area due to that there existed a certain number of brittle phases in the weld seams with TiNi and NiCrMo.

Key words:  metallic materials      TA1/X80 composite plate      microstructure and properties      fusion weld butt joints      butt joint      distribution of element     
Received:  30 September 2015     
ZTFLH:  TG113  
Fund: *Supported by High Technology Research and Development Program of China No.2013AA031303, National Natural Science Foundation of China No.51274162, and the Key Program of Science Funds of Xi’an Aeronautical University No.2015KY1104
About author:  **To whom correspondence should be addressed, Tel: (029)89071764, E-mail: wuweigang2008@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.557     OR     https://www.cjmr.org/EN/Y2016/V30/I5/372

Fig.1  Weld groove type and structure of weld joints (a) (Ⅰ-weld seam of Ti-Al-B,Ⅱ-weld seam of Ti-Ni,Ⅲ-weld seam of Ni-Cr-Mo,Ⅳ-weld seam of YC-GX80) and dimension of impact specimen (/mm) (b)
Fig.2  OM images of base metal (a) and different layers of weld seam (b, c, d), (a) interface of TA1-X80 of welded joint, (b) interface of TiAlB and TiNi weld seam, (c) interface of TiNi and NiCr weld seam, (d) interface of NiCe and YC-GX80 weld seam
Fig.3  SEM morphology (a) and EDS elements distribution curves (b) of base metal zone of welded joint for region I in Fig.a (Wm-mass fraction, Wa-atomic fraction)
Fig.4  SEM morphologies and EDS elements distribution curves and contents of different zones of weld seam, (a) interface of TiAlB and TiNi weld seam and its EDS elements distribution curves (Ⅰ), (b) interface of TiNi and NiCr weld seam and its EDS elements distribution curves (Ⅱ), (c) interface of NiCe and YC-GX80 weld seam and its EDS elements distribution curves (Ⅲ)
Fig.5  XRD patterns in different layers of weld seam, (a) TiNi weld layer, (b) NiCrMo weld layer
Test location Tensile strength
Rm /MPa
Yield strength
Rel /MPa
A
/%
Z
/%
Impact energy
Akv (J)/25℃
Bending strength and bending angle (MPa/°)
Normal
bend
Root bend
Base metal 715.4 693.5 11.5 49 188 1441/110 1332/57
Weld seam 501.1 389.1 9.5 34 35 1250/97 843/47
Table 1  The tensile, impact and bending test result of welded joint
Fig.6  Fractographies of in different layers of weld seam, (a) TiNi weld layer, (b) NiCrMo weld layer
Fig.7  Hardness profiles of weld joints on cross section
1 ZHANG Bin, QIAN Chengwen, WANG Yumei, ZHANG Yuzhi, Development and application of high-grade pipeline steel at home and abroad, Petro. Eng. Cons., 38(1), 2(2012)
(张斌, 钱成文, 王玉梅, 张玉志, 国内外高钢级管线钢的发展及应用, 石油工程建设, 38(1), 2(2012))
2 PAN Jiahua, China gas and gas pipeline industry, Weld Pipe, 31(4), 5(2008)
(潘家华, 我国的天然气及天然气管道工业, 焊管, 31(4), 5(2008))
3 KE Wei, Progress in public inquiry concerning corrosion in chinese industrial and natural environments, Corros. Prot., 25(1), 3(2004)
(柯伟, 中国工业与自然环境腐蚀调查的进度, 腐蚀与防护, 25(1), 3(2004))
4 SONG Aiping, Welding technology of titanium steel composite Plate, Steel Constr., 27(7), 55(2012)
(宋爱平, 钛钢复合板焊接技术, 钢结构, 27(7), 55(2012))
5 Akbari Mousavi S A A, Farhadi Sartangi P, Effect of post-weld heat treatment on interface microstructure of explosively welded titanium-stainless steel composite, Mater. Sci. Eng., A494, 336(2008)
6 A. Elrefaey, W. Tillmann, Effect of brazing parameters on microstructure and mechanical properties of titanium joints, J. Mater. Process. Technol., 299(5), 2752(2009)
7 CHEN Manqian, LIU Yafen, Welding of TA2/Q235B titanium/steel composite plate, Welding & Joining, 8, 53(2007)
(陈满乾, 刘亚芬, TA2/Q235B钛钢复合板的焊接, 焊接, 8, 53(2007))
8 WEN Chao, LIU Xiaoxin, MA Yanjun, Design and manufacture of explosion-containment vessel made of Ti/Steel clad plate, Chin. J. Nonferrour. Met., 20(S1), s973(2010)
(文潮, 刘晓新, 马艳军, 钛/钢复合板密封爆炸容器的设计与制造, 中国有色金属学报, 20(S1), s973(2010))
9 LIU Fengyao, Lin Sanbao, YANG Chunli, WU Lin, Effect of activating fluxes on weld form in TIG welding of stainless steel and titanium Alloy, Transaction of the China Welding Institution, 23(1), 3(2002)
(刘凤尧, 林三宝, 杨春丽, 吴林, TIG焊活性剂对焊缝成形的影响, 焊接学报, 23(1), 3(2002))
10 Fuji A, Ameyama K, North T.H, Effect of friction welding on characteristics of pure titanium/A5083 aluminum alloy joint, J. Mat. Sci., 1(3), 188(1996)
11 Sang Y S, Byoungchul H, Sunghak L, Nack J K, Seong S A, Correlation of microstructure and charpy impact properties in APIX70 and X80 Line-Pipe steel, Mater. Sci. Eng., A458, 281(2007)
12 MA Jing, ZHANG Xiaoyong, CHENG Shixia, GAO Huilin, Effect of temperature on microstructure and mechanical properties of (B+M/A) X80 pipeline steel with excellent deformability, Chinese Journal of Materials Research, 29(3), 187(2005)
(马晶, 张骁勇, 程时遐, 高惠临, 卷取温度对大变形(B+M/A)X80管线钢组织和性能的影响, 材料研究学报, 29(3), 187(2005))
13 Ghosh M, Das S, Banarjee P S, Chatterjee S, Variation in the reaction zone and its effect on the strength of diffusion bonded titanium-stainnless steel couple, Mater. Sci. Eng., A390, 219(2005)
14 Nizamettin K, Behcet G, Fehim F, Joining of titanium/stainless steel by expolosive welding and effect on interface, J. Mater. Process. Technol., 169(2), 127(2005)
15 YANG Jun, HE Zhirong, WANG Fang, WANG Yongshan, Effect of Cr addition on transformation and cyclic deformation characteristic of Ti-Ni shape memory alloy, Acta Metall. Sin., 47(2), 158(2011)
(杨军, 贺志荣, 王芳, 添加Cr对Ti-Ni形状记忆合金相变和低温形变特征的影响, 稀有金属材料与工程, 47(2), 158(2011))
16 MIAO Chengliang, SHANG Chengjia, WANG Xuemin, ZHANG Longfei, Microstructure and toughness of HAZ in X80 pipeline steel with high Nb content, Acta Metall. Sin., 46(5), 543(2010)
(缪成亮, 尚成嘉, 王学敏, 张龙飞, 高NbX80管线钢焊接热影响区显微组织于韧性, 金属学报, 46(5), 543(2010))
17 XIAO Xuan, JIA Yuxian, ZHOU Lanzhang, GUO Jianting, Effect of Ti addition on the microstructure of NiAl-Cr(Mo) eutectic alloy, Chinese Journal of Materials Research, 22(2), 210(2008)
(肖旋, 贾玉贤, 周兰章, 郭建亭, Ti含量对NiAl-Cr(Mo)共晶合金凝固组织的影响, 材料研究学报, 22(2), 210(2008))
18 LI Shuqing, DUAN Yuping, GONG Shuli, LI Qilian, LIU Shunhua, DUAN Aiqin, Microstructure and deposition mechanism of laser-hybrid plasma spraying NiCr-Cr3C2 coating, Rare Metal Materials and Engineering, 42(S2), 106(2013)
(李淑青, 段玉平, 巩水利, 李其连, 刘顺华, 段爱琴, 激光复合等离子喷涂NiCr-Cr3C2喷涂的微观组织与沉积机理研究, 稀有金属材料与工程, 42(S2), 106(2013))
19 ZHANG Yue, CHU Wuyang, YUAN Runzhang, WANG Yanbin, OU Yangshixi, XIAO Jimei, Hydrogen induced cleavage frature in Ti3Al and its mechanism, Acta Metall. Sin., 31(9), B408(1995)
(张跃, 褚武扬, 袁润章, 王燕斌, 欧阳世翕, 肖纪美, Ti3Al金属间化合物氢致解理断裂及其机理, 金属学报, 31(9), B408(1995))
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!