Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (3): 209-219    DOI: 10.11901/1005.3093.2015.433
Orginal Article Current Issue | Archive | Adv Search |
Effect of Different Coupling Agents on Interfacial Properties of Hollow Glass Microsphere/Phenolic Syntactic Foams
WANG Bo, HUANG Chi, HUANG Zhixiong*(), ZHANG Jingjie
(Key Laboratory of Advanced Technology for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China)
Cite this article: 

WANG Bo, HUANG Chi, HUANG Zhixiong, ZHANG Jingjie. Effect of Different Coupling Agents on Interfacial Properties of Hollow Glass Microsphere/Phenolic Syntactic Foams. Chinese Journal of Materials Research, 2016, 30(3): 209-219.

Download:  HTML  PDF(9695KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hollow glass microspheres (HGM) are modified with different types of coupling agents.Phenolic syntactic foams are prepared by introducing the modified hollow glass microspheres into phenolic matrix. The interaction between HGM and phenolic matrix, as well as the flexural strength, fracture toughness, and dynamic mechanical properties of phenolic syntactic foams were then studied. Results showed that the graft of coupling agent onto the surface of HGM could reduce the agglomeration of HGM in the phenolic matrix, enhance the compatibility of HGM with phenolic matrix and the hydrophobicityof HGM, resulting in a good comprehensive property of phenolic syntactic foams. Among various types of coupling agents of γ-aminopropyltriethoxysilane(APTES), di(dioctylpyrophosphato) ethylene titanate(NDZ-311), and glutaraldehyde(GA), the long chains on the surface of NDZ311grafted HGM may interact with polymer chains of PF matrix through Vander Waals forces and physical entanglement of molecular chains; For the case of APTES-HGM, when the particles are immersed in resol phenolic, a few hydroxymethylgroup could react with amino group to form chemical bonding, the physicalentanglement of molecular chains dominates the linkage between filler and matrix; In syntactic foams containing GA modified HGM, the aldehyde group could react with phenolic resinmonomers and form acetal linkage with resin matrix.

Key words:  composite      interfacial properties      surface modification      hollow glass microsphere      glutaraldehyde     
Received:  01 August 2015     
ZTFLH:  TB332  
About author:  *To whom correspondence should be addressed, Tel: 13807180447, E-mail: zhixiongh@whut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.433     OR     https://www.cjmr.org/EN/Y2016/V30/I3/209

Fig.1  The mechanism of surface modification of HGM
Fig.2  FT-IR spectra of (a) pristine HGM, (b) hydroxylated HGM, (c) HGMAPTES, (d) HGM-GA, (e) HGM-NDZ311, (f) HGM-APTES-GA
Fig.3  Contact angle images of (a) pristine HGM, (b) hydroxylated HGM, (c) HGM-APTES, (d) HGM-GA, (e) HGM-NDZ311, (f) HGM-APTES-GA
Fig.4  SEM images of (a) pristine HGM, (b) HGM-APTES, (c) HGM-GA, (d) HGM-NDZ311, (e) HGMAPTES-GA
Fig.5  SEM images of the fracture surface of various syntactic foams after fracture toughness tests, containing (a) pristine HGM, (b) HGM-APTES, (c) HGM-GA, (d) HGM-NDZ311, (e) HGM-APTES-GA
Fig.6  Flexure stress-strain curves (Left), Flexural strength and fracture toughness (Right) ofphenolic syntactic foams filled with (a) pristine HGM, (b) HGM-APTES, (c) HGM-GA, (d) HGMNDZ311, (e) HGM-APTES-GA
Fig.7  SEM images of interface state between PF matrix and (a) pristine HGM, (b) HGM-APTES, (c)HGM-GA, (d) HGM-NDZ311, (e) HGM-APTES-GA216
Fig.8  Temperature dependence of storage modulus (a) and loss factor (b) for phenolicsyntactic foams filled with various HGM
Fig.9  The schematic diagram of interaction between modified HGM and PF matrix
1 N. Tsubokawa, A.Kogure, Y.Sone, Grafting of polyesters from ultrafine inorganic particles: copolymerization of epoxides with cyclicacid anhydrides initiated by COOK groups introduced onto thesurface, Journal of Polymer Science Part A Polymer Chemistry, 28, 1923(1995)
2 C. B. Murray, D Norris, M. G. Bawendi, Synthesis and characterization of nearly monodisperseCdE(E=sulfur, selenium, tellurium)semiconductor nanocrystallites, Journal of the American ChemicalSociety, 115, 8706(1993)
3 N. Greenham, X. Peng, A. P. Alivisatos, Charge seperation and transport inconjugated-polymer/semiconductor-nanocrystal composites studied byphotoluminescence quenching and photoconductivity, Physical Review B, 54, 17628(1996)
4 S. Kango, S.Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar, Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites-A review, Progress in Polymer Science, 38(8), 1232(2013)
5 M. Z. Rong, M. Q. Zhang, Y. X. Zheng, H. M. Zeng, R Walter, K Friedrich, Structure-property relationships ofirradiation grafted nanoinorganic particle filled polypropylene composites, Polymer, 42(1), 167(2001)
6 G. Kickelbick, Concepts for the incorporation ofinorganic buildingblocks into organic polymers on a nanoscale, Progress in PolymerScience, 28(1), 83(2003)
7 M. Sabzi, S. M. Mirabedini, J. Zohuriaan-Mehr, M. Atai, Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on theproperties of polyurethane composite coating, Progress in Organic Coatings, 65(2), 222(2003)
8 C. X. Wang, H. Y. Mao, C. Wang, S. H. Fu, Dispersibility and hydrophobicity analysis of titanium dioxide nanoparticles grafted with silane coupling agent, Industrial and Engineering Chemistry Research, 50(21), 11930(2011)
9 M. J. Owen.Coupling agents: chemical bonding at interfaces. Adhesion Science and Engineering, 2, 403(2002)
10 Y. K. Guo, M. Y. Wang, H. Q. Zhang, The surface modification of nanosilica, preparation of nanosilica/acrylic coreshell composite latex, and its application in toughening PVC matrix, Journal of Applied Polymer Science, 107, 2671(2008)
11 H. Gun-Young, J. K. Soo, Effect of coupling agents on thermal, flow, and adhesion properties of epoxy/silica compounds for capillary underfill applications, Powder Technology, 230, 145(2012)
12 T. L. Truong, A. Larsen, B. Holme, S. Diplas, F. K. Hansen, J. Roots, S, Jorgensen, Dispersibility of silane-functionalized alumina nanoparticles in syndiotactic polypropylene, Surface and Interface Analysis, 42(6-7), 1046(2010)
13 X. Shen, S.Gui, B. Lin, Surface organic modification of Fe3O4 nanoparticles by silane-coupling agents, Rare Metals, 25(SI), 426(2006)
14 S. R. Ma, L. Y. Shi, X Feng, Graft modification of ZnO nanoparticles with silane coupling agent KH570 in mixed solvent, Journal of Shanghai University, 12, 278(2005)
15 I. Motoyuki, S. Nobuhiro. L.Wuled, K. Hidehiro, Surface modification of BaTiO3 particles by silane coupling agents in differentsolvents and their effect on dielectric properties of BaTiO3/epoxy composites, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 352(1-3), 88(2009)
16 L. Zhang, M.Zhong, H. L.Ge, Surface modification of zinc oxide nanorods for potential applications in organic materials, Applied Surface Science, 258(4), 1551(2011)
17 Z. F. Tang, G.J. Cheng, Y. S. Chen, X. H. Yu, H. L. Wang, Characteristics evaluation of calcium carbonate particles modified by surface functionalization, Advanced Powder Technology, 25(5), 1618(2014)
18 N. S. K.Naga, S. Minashree, N. Lana, K. Kamaljit, M. Sushanta, Optimization and characterization of biomolecule immobilization on silicon substrates using(3-aminopropyl) triethoxysilane(APTES) and glutaraldehyde linker, Applied Surface Science, 305, 522(2014)
19 L. Zhang, J. Ma, Effect of coupling agent on mechanical properties of hollow carbonmicrosphere/phenolic resin syntactic foam, Composites Science and Technology, 70(8), 1265(2010)
20 M. H. Choi, B. H. Jeon, I. J. Chung, The effect of coupling agent on electrical and mechanical properties ofcarbon fiber/phenolic resin composites, Polymer, 41(8), 3243(2000)
21 R. Al-Oweini, H. El-Rassy, Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 andSi(OR)3 precursors, Journal of Molecular Structure, 919, 140(2009)
22 R. K.Goyal, A. S. Kapadia, Study on phenyltrimethoxysilane treated nano-silicafilled high performance poly(etheretherketone) nanocomposites, Composite Part B, 50, 135(2013)
23 T. Theppradit, P. Prasassarakich, S. Poompradub, Surface modification of silica particles and its effects on cure and mechanical properties of the natural rubber composites, Materials Chemistry and Physics, 148(3), 940(2014)
24 F. Touaiti, P. Alam, M. Toivakka, D. W. Bousfield, Polymer chain pinning at interfaces in CaCO3- SBR latex composites, Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 527(9), 2363(2010)
25 S. Kango, S. Kalia, A. Celli, J. Njuguna, Surface modification of inorganicnanoparticles for development of organic-inorganic nanocomposites-a review, Progress in Polymer Science, 38(8), 1232(2013)
26 Z. Y. Yang, Y. J. Tang, J. H. Zhang, Surface modification of CaCO3 nanoparticleswith silane coupling agent for improvement of the interfacial compatibility with styrene-butadiene rubber latex, Chalcogenide Lett., 10(4), 131(2013)
27 N. S. K.Gunda, M. Singh, L. Norman, K.Kaur, S.K. Mitra, Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl) triethoxysilane (APTES) and glutaraldehyde linker, Applied Surface Science, 305, 522(2014)
28 L. Chvátalová, R. Čermák, A. Mráček, O. Grulich, A. Vesel, P. Ponížil, A. Minařík, U. Cvelbar, L. Beníček, P. Sajdl, The effect of plasma treatment on structure and properties of poly(1-butene) surface, European Polymer Journal, 48(4), 866(2012)
29 G. J. Cheng, B. Tong, Z. F. Tang, X. H. Yu, H. L. Wang, G. X. Ding, Surface functionalization of coal powder with different coupling agents for potential applications in organic materials, Applied Surface Science, 313, 954(2014)
30 M. Z.Rong, M. Q. Zhang, Y. X. Zheng, H. M. Zeng, R. Walter, K. Friedrich, Structure-property relationships of irradiation grafted nano inorganic particle filled polypropylene composites, Polymer, 42(1), 167(2001)
31 X. Wang, P. P. Wang, Y. Jiang, Q. Su, J.P. Zheng, Facile surface modification of silica nanoparticles with a combination of noncovalent and covalent methods for composites application, Composites Science and Technology, 104, 1(2014)
32 L. Y. Zhang, J. Ma, Effect of coupling agent on mechanical properties of hollow carbon microsphere/phenolic resin syntactic foam, Composites Science and Technology, 70, 1265(2010)
33 S. S. Kelly, T. G.Rials, W. G.Glasser, Relaxation behavior of the amorphous components of wood, Journal of Materials Science, 22, 617(1986)
34 V. C. Shunmugasamy, D. Pinisetty, N. Gupta, Viscoelastic properties of hollow glass particle filled vinyl ester matrix syntactic foams: effect of temperature and loading frequency, Journal of Materials Science, 48(4), 1685(2013)
35 M. S. Islam, S. Hamdan, Z. A. Talib, A. S. Ahmed, M. R. Rahman, Tropical wood polymer nanocomposite(WPNC): The impact of nanoclay on dynamic mechanical thermal properties, Composites Science and Technology, 72, 1995(2012)
36 A. Hazarika, M. Mandal, T. K. Maji, Dynamic mechanical analysis, biodegradability and thermal stability of wood polymer nanocomposites, Composites Part B, 60, 568(2014)
37 B. John, C. P.Reghunadhan Nair, K. N. Ninan, Effect of nanoclay on the mechanical, dynamic mechanical and thermal properties of cyanate ester syntactic foams, Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 527(21-22), 5435(2010)
38 H. Essabir, A. Elkhaoulani, K. Benmoussa, R. Bouhfid, F.Z.Arrakhiz, A. Qaiss, Dynamic mechanical thermal behavior analysis of doum fibers reinforced polypropylene composites, Materials&Design, 51, 780(2013)
39 M. J. John, R. D. Anandjiwala, Chemical modification of flax reinforced polypropylene composites, Composites Part A, 40(4), 442(2009)
40 N. A. Bakar, C. Y. Chee, L.C. Abdullah, C. T. Ratnam, N. A. Ibrahim,Thermal and dynamic mechanical properties of grafted kenaf filled poly(vinyl chloride)/ethylene vinyl acetate composites, Materials&Design, 65, 204(2015)
41 M. H. Choi, B. H. Jeon, I. J. Chung, The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites, Polymer, 41(9), 3243(2000)
42 L. Y. Zhang, J. Ma, Effect of coupling agent on mechanical properties of hollow carbonmicrosphere/phenolic resin syntactic foam, Composites Science and Technology, 70, 1265(2010)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!