Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (4): 255-262    DOI: 10.11901/1005.3093.2015.422
Orginal Article Current Issue | Archive | Adv Search |
Effect of Copper Foil Surface Morphology on the Quality of Graphene Grown by CVD
SONG Ruili1, LIU Ping2,**(), ZHANG Ke2, LIU Xinkuan2, CHEN Xiaohong2
1. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2. School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Cite this article: 

SONG Ruili, LIU Ping, ZHANG Ke, LIU Xinkuan, CHEN Xiaohong. Effect of Copper Foil Surface Morphology on the Quality of Graphene Grown by CVD. Chinese Journal of Materials Research, 2016, 30(4): 255-262.

Download:  HTML  PDF(5251KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High-quality and few-layered graphene was grown by chemical vapor deposition (CVD) on copper foils, which were pre-treated by etching with 25%HCl or 2 mol/L FeCl3 and then electrochemical polishing in order to improve their surface smoothness. The surface morphology of the copper foils and the deposited graphene were characterized by means of Raman spectroscopy, XRD and SEM etc. The results showed that copper foils with desired surface smoothness would be acquired through etching with 2 mol/L FeCl3 for 30 s and then electrochemical polishing for 60 s by applied voltage of 10 V; Films of layered graphene with less defects could be deposited on the pre-treated copper foils. The thickness of graphene films increased with the increasing time, however for a short deposition time the formed graphene films were discontinuous with poor quality. The monolayered high-quality graphene films could be prepared by depositing for 30 s, whilst the deposition time increased to 60 s a graphite film could form on the surface. In other word, it is necessary to control the deposition on time for growing the desired monolayered graphene films.

Key words:  inorganic non-metallic materials      copper foil      graphene      CVD      quality     
Received:  27 July 2015     
ZTFLH:  TB331  
Fund: Supported by Youth Fund of National Natural Science Foundation Project No. 51301106
About author:  To whom correspondence should be addressed, Tel:18221916398, E-mail:liuping@usst.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.422     OR     https://www.cjmr.org/EN/Y2016/V30/I4/255

Fig.1  Model diagram of graphene growth mechanism on rough copper foil surface, (a) dissociation of hydrocarbon on heated copper foil surface, (b) nucleation and growth of graphene, (c) reaction termination, (d) final graphene and final amorphous carbon on the rough surface of copper foil
Fig.2  XRD and SEM characterization of copper foils before and after annealing, (a) copper foils before annealing, (b) copper foils after annealing, (c) copper foils before annealing, (d) copper foils after annealing
Fig.3  SEM images of copper foils treated by different processing conditions, (a)washed by 25% HCl for 10 min, (b) to (d) etched by 2 mol/L FeCl3 for 15 s, 30 s and 45 s respectively, (e) to (g) electrochemically polished at 10 voltage for 20 s, 40 s, 60 s and 80 s respectively
Fig.4  Raman characterization of graphene on copper foils treated by different conditions
Curve number
of Fig.4
Treatment condition ID/IG I2D/IG Full width at half maximum (cm-1)
1 25%HCl, 10 min 0.67 0.93 57
2 2 mol/L FeCl3, 15 s 0.57 1.14 40
3 2 mol/L FeCl3, 30 s 0.51 1.71 39
4 2 mol/L FeCl3, 45 s 1.14 0.86 47
5 Polished 30 s 0.6 2.6 35.5
6 Polished 45 s 0.42 1.38 47
7 Polished 60 s 0.4 1.63 44
Table 1  Raman data of graphene on copper foils treated by different conditions
Fig.5  SEM characterization of graphene grown on copper foils electrochemically polished at 10 V for 60 s, (a) to (d) graphene growth time of 15 s, 30 s, 45 s and 60 s, (e) polarizing microscope imagines of graphene growth time of 30 s
Fig.6  Raman spectra of graphene grown on copper foils electrochemically polished at 10 V for 60 s, (a) graphene of growth time of 15 s, 30 s, 45 s and 60 s (transferred to SiO2/Si substrate), (b) 2D peak corresponding to Fig.a, (c) curve fitted by the Lorenz function of growth time of 30 s of Fig.a
1 A. K. Geim, K. S. Novoselov, The rise of graphene, Nature Material, 6(3), 183(2007)
2 S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K.S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, Roll-to-roll Production of 30-inch Graphene Films for Transparent Electrodes, Nature Nanotechnology, 5(20), 574(2010)
doi: 10.1038/nnano.2010.132 pmid: 20562870
3 M. D. Stoller, S. Park, Y. W. Zhu, Jinho An, Rodney S. Ruoff, Graphene-based ultracapacitors, Nano Letters, 8(10), 3498(2008)
4 M. M. Qin, W. Ji, Y. Y. Feng, W. Feng, Transparent conductive graphene films prepared by hydroiodic acid and thermal reduction, Chin. Phys. B, 23(2), 28103(2014)
doi: 10.1088/1674-1056/23/2/028103
5 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 306(5296), 666(2004)
doi: 10.1126/science.1102896 pmid: 15499015
6 WANG Wenrong, ZHOU Yuxiu, LI Tie, WANG Yuelin, XIE Xiaoming, Research on synthesis of high-quality and large-scale graphene films by chemical vapor deposition, Acta Phys. Sin., 61(3), 38702(2012)
(王文荣, 周玉修, 李铁, 王跃林, 谢晓明, 高质量大面积石墨烯的化学气相沉积制备方法研究, 物理学报, 61(3), 38702(2012))
7 L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L. P. Ma, Z. Zhang, Q. Fu, L. M. Peng, X. Bao, H. M. Cheng, Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum, Nature Communications, 3(699), 1(2012)
doi: 10.1038/ncomms1702 pmid: 22426220
8 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457(7230), 706(2009)
doi: 10.1038/nature07719 pmid: 14024896201214601402425
9 Q. Li, H. Chou, J. H. Zhong, J. Y. Liu, A. Dolocan, J. Zhang, Y. Zhou, R. S. Ruoff, S. Chen, W. Cai, Growth of adlayergraphene on Cu studied by carbon isotope labeling, Nano Letters, 13(2), 486(2013)
doi: 10.1021/nl303879k
10 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324(5), 1312(2009)
pmid: 328017472034514550170888592922232222194237752813807468703299238941
11 Y. P. Hsieh, Y. W. Wang, C. C. Ting, H. C. Wang, K. Y. Chen, C. C. Yang, Effect of catalyst morphology on the quality of CVD grown graphene, Journal of Nanomaterials, 2013(2013)
doi: 10.1155/2013/393724
12 LI Xu, ZHAO Weifeng, CHEN Guohua, Research progress in preparation and characterization graphene, Material Review, 22(8), 48(2008)
(李旭, 赵卫峰, 陈国华, 石墨烯的制备与表征研究, 材料导报, 22(8), 48(2008))
doi: 10.3321/j.issn:1005-023X.2008.08.013
13 REN Wencai, GAO Libo, MA Laipeng, CHENG Huiming, Preparation of graphene by chemical vapor deposition, New Carbon Materials, 26(1), 71(2011)
(任文才, 高力波, 马来鹏, 成会明, 石墨烯的化学气相沉积法制备, 新型炭材料, 26(1), 71(2011))
14 TIAN Juntao, Overview of the production process on rolled copper foil, Shanghai Nonferrous Metals, 35(4), 170(2014)
(田军涛, 压延铜箔生产工艺概述, 上海有色金属, 35(4), 170(2014))
doi: 10.13258/j.cnki.snm.2014.04.008
15 HAN Chen, SUN Futao, Technological analysis of nonferrous metal strip produced by steckel mills, Shanghai Nonferrous Metals, 36(3), 131(2015)
(韩晨, 孙付涛, 炉卷轧机应用于有色金属板带材生产工艺分析, 上海有色金属, 36(3), 131(2015))
doi: 10.13258/j.cnki.snm.2015.03.009
16 FU Honghua, Copper strip slitting defect analysis and quality control, Shanghai Nonferrous Metals, 35(4), 150(2014)
(傅红华, 铜带材纵剪缺陷分析及质量控制, 上海有色金属, 35(4), 150(2014))
doi: 10.13258/j.cnki.snm.2014.04.003
17 X. Li, C. W. Magnuson, A. Venugopal, M. Tromp Rudolf, B. Hannon James, M. Vogel Eric, Colombo Luigi, S. Ruoff Rodney, Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper, Journal of the American Chemical Society, 133(9), 2816(2011)
doi: 10.1021/ja109793s
18 H. Wang, G. Wang, P. Bao, S. Yang, W. Zhu, X. Xie, W. J. Zhang, Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation, Journal of the American Chemical Society, 134(8), 3627(2012)
19 T. R. Wu, G. Q. Ding, H. L. Shen, H. M. Wang, L. Sun, D. Jiang, X. M. Xie, M. H. Jiang, Triggering the continuous growth of graphene toward millimeter-sized grains, Advanced Functional Materials, 23(2), 198(2013)
doi: 10.1002/adfm.201201577
20 Gang Hee Han, Fethullah Güneş, Jung Jun Bae, Eun Sung Kim, Seung Jin Chae, Hyeon-Jin Shin, Jae-Young Choi, Didier Pribat, Young Hee Lee, Influence of copper morphology in forming nucleation seeds for graphene growth, Nano Lett., 11(10), 4144(2011)
doi: 10.1021/nl201980p pmid: 21863812
21 Shonali Dhingra, Jenfeng Hsu, Ivan Vlassiouk, Brian D’Urso, Chemical vapor deposition of graphene on large-domain ultra-flat copper, Carbon, 69, 188(2014)
22 Dongmok Lee, Gi Duk Kwon, Jung Ho Kim, Eric Moyen, Young Hee Lee, Seunghyun Baik, Didier Pribat, Significant enhancement of the electrical transport properties of graphene films by controlling the surface roughness of Cu foils before and during chemical vapor deposition, Nanoscale, 6, 12943(2014)
23 Pavel Procházka, Jindřich Mach, Dominik Bischoff, Zuzana Liš ková, Petr Dvořák, Marek Vaňatka, Pauline Simonet , Anastasia Varlet, Dušan Hemzal, Martin Petrenec, Lukáš Kalina, Miroslav Bartošík, Klaus Ensslin, Peter Varga, Jan Čechal, Tomáš Šikola, Ultrasmooth metallic foils for growth of high-quality graphene by chemical vapor deposition, Nano Technology, 25(18), 185601(2014)
24 H. I. Rasool, E. B. Song, M. J. Allen, J. K. Wassei, R. B. Kaner, K. L. Wang, B. H. Weiller, J. K. Gimzewski, Continuity of graphene on polycrystalline copper, Nano Letters, 11(1), 251(2010)
doi: 10.1021/nl1036403 pmid: 21117698
25 H. I. Rasool, E. B. Song, M. Mecklenburg, B. C. Regan, K. L. Wang, B. H. Weiller, J. K. Gimzewski, Atomic-scale characterization of graphene grown on copper (100) single crystals, Journal of the American Chemical Society, 133(32), 12536(2011)
doi: 10.1021/ja200245p
26 Y. F. Zhang, T. Gao, Y. B. Gao, S. B. Xie, Q. Q. Ji, K. Yan, H. L. Peng, Z. F. Liul, Defect-like structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy, ACS Nano, 5(5), 4014(2011)
doi: 10.1021/nn200573v
27 S. Nie, J. M. Wofford, N. C. Bartelt, O. D. Dubon, K.F. McCarty, Origin of the mosaicity in graphene grown on Cu(111), Physical Review B, 84(15), 155425(2011)
28 YANG Lianqiao, FENG Wei, WANG Lang, ZHANG Jianhua, Study on fabrication parameter of graphene on copper by CVD , Journal of Huazhong University of Science and Technology (Nature Science Edition), 42(10), 5(2014)
(杨连乔, 冯伟, 王浪, 张建华, 铜基石墨烯的CVD法制备工艺参数研究, 华中科技大学学报(自然科学版), 42(10), 5(2014))
doi: 10.13245/j.hust.141002
29 X. L. Guo, X. Yi, Studies on electrochemical polishing of stainless steel, Electroplating and Finishing, 20(5), 11(2001)
30 B. Du, H. Q. Li, Development of electrochemical polishing technology, Surface Technology, 36(2), 56(2007)
doi: 10.2514/1.26230
31 A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Letters, 9(1), 30(2009)
doi: 10.1021/nl801827v pmid: 19046078
32 L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, Raman spectroscopy in graphene, Phys., Rep., 473(5-6), 51(2009)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[9] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] WANG Chunjin, CHEN Wenge, KANG Ningning, YANG Tao. Microstructure and Properties of Graphene-regulated Functional Titanium by Laser Additive Manufacturing[J]. 材料研究学报, 2023, 37(10): 791-800.
[11] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[12] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[13] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[14] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[15] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
No Suggested Reading articles found!