|
|
Microstructure and Properties of Graphene-regulated Functional Titanium by Laser Additive Manufacturing |
WANG Chunjin, CHEN Wenge( ), KANG Ningning, YANG Tao |
Xi'an University of Technology, School of Material Science and Engineering, Xi'an 710048, China |
|
Cite this article:
WANG Chunjin, CHEN Wenge, KANG Ningning, YANG Tao. Microstructure and Properties of Graphene-regulated Functional Titanium by Laser Additive Manufacturing. Chinese Journal of Materials Research, 2023, 37(10): 791-800.
|
Abstract Porous graphene /Ti(Gr/Ti) composites were fabricated by selective laser melting (SLM) technique with the mixture of Ti powder and graphene as raw material, and the effect of graphene (Gr) addition on the microstructure, mechanical properties and corrosion resistance of porous Gr/Ti composites were investigated. The results show that the macrostructure of the porous Gr/Ti composite is not significantly different from the designed structure, but the porosity is lower than the designed structure. The porous pure titanium prepared by SLM consists of small equiaxed grains, and the grain size of which is further reduced after the addition of graphene, while the graphene uniformly distributed in the Ti-matrix. A small portion of graphene reacts with Ti-matrix leading to the formation of TiC, as a result, the in-situ generated TiC as second phase particles can reinforce the base metal through dispersion strengthening. The compression stress-strain curves of the porous Gr/Ti composite display elastic deformation stage, stress plateau stage and densification stage. The hardness, compressive strength and compression ratio of the porous Gr/Ti composite were 503HV, 317.38 MPa and 42%, respectively. Its corrosion potential and the corrosion current density were -0.325 V and 3.28×10-7 A·cm-2 respectively, indicating a better corrosion resistance in the comparison to the one of pure Ti.
|
Received: 18 July 2022
|
|
Fund: Xi'an Science Research Project of China(23ZDCYJSGG0042-2002) |
Corresponding Authors:
CHEN Wenge, Tel: (029)82312383, E-mail: wgchen001@263.net
|
1 |
He X, Wang X F, Wang X L, et al. Research progress in the preparation process of porous titanium materials [J]. Light Ind. Sci. Technol., 2020, 36(9): 69
|
|
何 喜, 王晓峰, 王小炼 等. 多孔钛材料制备工艺研究进展 [J]. 轻工科技, 2020, 36(9): 69
|
2 |
Singla A K, Banerjee M, Sharma A, et al. Selective laser melting of Ti6Al4V alloy: Process parameters, defects and post-treatments [J]. J. Manuf. Process 2021, 64: 161
|
3 |
Ats A, Ytb C, Pbp C, et al. Effect of processing parameters on the densification, microstructure and crystallographic texture during the laser powder bed fusion of pure tungsten [J]. Int. J. Refract. Met. Hard Mater., 2019, 78: 254
doi: 10.1016/j.ijrmhm.2018.10.004
|
4 |
Attar H, Bönisch M, Calin M, et al. Selective laser melting of in situ titanium-titanium boride composites: Processing, microstructure and mechanical properties [J]. Acta Mater., 2014, 76: 13
doi: 10.1016/j.actamat.2014.05.022
|
5 |
Zhang M L, Chi X T, Zhou C S, et al. Preparation and properties of porous Ti-Nb alloy materials [J]. Kang T'ieh Fan T'ai, 2021, 42(6): 84
|
|
张美丽, 叱小彤, 周春生 等. 多孔Ti-Nb合金材料的制备与性能研究 [J]. 钢铁钒钛, 2021, 42(6): 84
|
6 |
Chen M, Zhang E, Lan Z. Microstructure, mechanical properties, bio-corrosion properties and antibacterial property of Ti-Ag sintered alloys [J]. Mater. Sci. Eng., C, 2016, 62: 350
|
7 |
Chandra Y, Adhikaris S, Saaavedra F E I, et al. Advances in finite element modelling of graphene and associated nanostructures [J]. Mater. Sci. Eng.: R: Reports, 2020, 140: 100544
doi: 10.1016/j.mser.2020.100544
|
8 |
Hong J J, He X L, Fu C X, et al. Research progress of graphene reinforced composites [J]. Chem. Propellants Polym. Mater., 2020, 18(6): 11
|
|
洪机剑, 何小玲, 傅楚娴 等. 石墨烯增强复合材料研究进展 [J]. 化学推进剂与高分子材料, 2020, 18(6): 11
|
9 |
Luo J M, Wu X H, Zang J P, et al. Preparation and mechanical properties of GNPs-Cu/Ti6Al4V composites[J]. Chin. J. of Nonferrous Met., 2017, 27(9): 1803
|
|
罗军明, 吴小红, 张剑平 等. 石墨烯-Cu/Ti6Al4V复合材料的制备及力学性能 [J]. 中国有色金属学报, 2017, 27(9): 1803
|
10 |
Hu Z R, Tong G Q, Zhang C, et al. Corrosion behavior of laser sintered graphene reinforced titanium martix nanocomposite [J]. China Surf. Eng., 2015, 28(06): 127
|
|
胡增荣, 童国权, 张 超 等. 激光烧结石墨烯钛纳米复合材料及其耐腐蚀性能 [J]. 中国表面工程, 2015, 28(6): 127
|
11 |
Mu X N, Cai H N, Zhang H M, et al. Interface evolution and superior tensile properties of multi-layer graphene reinforced pure Ti matrix composite [J]. Mater. Des., 2017, 140: 431
doi: 10.1016/j.matdes.2017.12.016
|
12 |
Yan Q, ChenN B, Li J S. Super-high-strength graphene/titanium composites fabricated by selective laser melting [J]. Carbon, 2020, 174(12): 451
doi: 10.1016/j.carbon.2020.12.047
|
13 |
Lin K, Fang Y, Gu D, et al. Selective laser melting of graphene reinforced titanium matrix composites: Powder preparation and its formability [J]. Adv. Powder Technol., 2021, 32(5): 426
|
14 |
Chen H, Mi G B, Li P J, et al. Effects of graphene oxide on microstructure and mechanical properties of 600℃ high temperature titanium alloy [J]. J. Mater. Eng., 2019, 47(9): 8
|
|
陈 航, 弭光宝, 李培杰 等. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响 [J]. 材料工程, 2019, 47(9): 8
|
15 |
Jiang H, Ler J X, XIE C Y. Electrochemical corrosion behaviors of ultrafine-grained commercially pure titanium processed by rolling [J]. J. Plast. Eng., 2016, 23(6): 187
|
|
江鸿, 雷君相, 谢超英. 轧制变形超细晶纯钛的电化学腐蚀行为 [J]. 塑性工程学报, 2016, 23(6): 187
|
16 |
Sun L F, Yang Y Q, Yang Z. Study on surface roughness of selective laser meiting Ti6Al4V based on power characteristics [J]. Chin. J. Lasers, 2016, 43(7): 104
|
|
孙健峰, 杨永强, 杨洲. 基于粉末特性的选区激光熔化Ti6Al4V表面粗糙度研究 [J]. 中国激光, 2016, 43(7): 104
|
17 |
Yang Y C, Wu B, Liu Y Q. Synthesis of bilayer graphene via chemical vapor deposition and its optoelectronic devices [J]. Acta Phys. Sin., 2017, 66(21): 177
|
|
杨云畅, 武斌, 刘云圻. 双层石墨烯的化学气相沉积法制备及其光电器件 [J]. 物理学报, 2017, 66(21): 177
|
18 |
Wu Y L, Wang Y, Qiao L Y, et al. Study on structures and properties of hexagonal porous Ti6Al4V ally via selective laser melting [J]. J. Funct. Mater., 2018, 49(6): 6080
|
|
吴艳琳, 王勇, 乔丽英, 姜定成. 选区激光熔化成型正六方柱体多孔TC4合金结构及力学性能研究 [J]. 功能材料, 2018, 49(6): 6080
doi: 10.3969/j.issn.1001-9731.2018.06.012
|
19 |
Chou X M. Study on powder metallurgy titanium alloy and porous titanium [D]. Changsha: Central South University, 2007
|
|
丑晓明. 粉末冶金钛合金及多孔钛研究 [D]; 长沙: 中南大学, 2007
|
20 |
Li H L, Jia D C, Yang Z H, et al. Research progress on selective laser melting 3D printing of titanium alloys and titanium matrix composites [J]. Mater. Sci. Technol., 2019, 27(2): 1
doi: 10.1179/026708311X12911114483692
|
|
李海亮, 贾德昌, 杨治华 等. 选区激光熔化3D打印钛合金及其复合材料研究进展 [J]. 材料科学与工艺, 2019, 27(2): 1
|
21 |
Sun F, Wang K X, Yang H, et al. Investigation of graphene reinforced titanium matrix composites preparation process and properties [J]. Titanium Ind. Prog., 2019, 36(1): 8
|
|
孙 峰, 王凯旋, 杨辉 等. 石墨烯增强钛基复合材料制备工艺与性能研究 [J]. 钛工业进展, 2019, 36(1): 8
|
22 |
Hu Z R, Tong G Q, Zhang C, et al. Corrosion behavior of laser sintered graphene reinforced titanium matrix nanocomposites [J]. China Surf. Eng., 2015, 28(6): 127
|
23 |
Li H, Huang B, Fan S, et al. Microstructure and Tensile Properties of Ti-6Al-4V Alloys Fabricated by Selective Laser Melting [J]. Rare Met. Mater. Eng., 2013, 42(2): 209
|
24 |
Jeon C H, Jeong Y H, Seo J J, et al. Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing [J]. Int. J. Precis. Eng. Man., 2014, 15(6): 1235
doi: 10.1007/s12541-014-0462-2
|
25 |
Singla A K, Baner J M, Sharma A, et al. Selective laser melting of Ti6Al4V alloy: Process parameters, defects and post-treatments [J]. J. Manuf. Process, 2021, 64: 161
doi: 10.1016/j.jmapro.2021.01.009
|
26 |
Bayode B L, Tefeo M L, Tayler T, et al. Structural, mechanical and electrochemical properties of spark plasma sintered Ti-30Ta alloys [J]. Mater. Sci. Eng., B, 2022, 283: 115826
|
27 |
Zhang F, Liu S, Zhao P, et al. Titanium/nanodiamond nanocomposites: Effect of nanodiamond on microstructure and mechanical properties of titanium [J]. Mater. Des., 2017, 131: 144
doi: 10.1016/j.matdes.2017.06.015
|
28 |
Bai H Q, Shang Z, Cai X L, et al. Research progress of in-situ titanium carbide particulate reinforced titanium composite material [J]. Hot Working Technol., 2019, 48(4): 1
|
|
白海强, 商 昭, 蔡小龙 等. 原位制备碳化钛颗粒增强钛基复合材料研究进展 [J]. 热加工工艺, 2019, 48(4): 1
|
29 |
Wang X J, Wang X C, Xi B Y I, et al. Impact of powder characteristics on formation properties of selective laser melted Al-Si alloy [J]. Shandong Sci., 2016, 29(2):30
doi: 10.3976/j.issn.1002-4026.2016.02.007
|
|
王小军, 王修春, 伊希斌 等. 粉体特征对选区激光熔化Al-Si合金成型性能的影响 [J]. 山东科学, 2016, 29(2):30
|
30 |
Zong X W, Zhang J, Lu B H, et al. Numerical analysis and microstructure and properties of Hastelloy X and Ti6Al4V alloy formed by selective laser melting [J]. Appl. Laser, 2021, 41(4): 745
|
|
宗学文, 张 健, 卢秉恒 等. 选区激光熔化制备Hastelloy X和Ti6Al4V合金数值分析及组织性能 [J]. 应用激光, 2021, 41(4): 745
|
31 |
Gu D, Meng G, Li C, et al. Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement [J]. Scr. Mater., 2012, 67(2): 185
doi: 10.1016/j.scriptamat.2012.04.013
|
32 |
Ph A, Zz A, Wd B, et al. Deformation strengthening mechanism of in situ TiC/TC4 alloy nanocomposites produced by selective laser melting [J]. Composites, Part B, 2021, 225: 109305
|
33 |
Chen S Y, Huang J C, Pan C T, et al. Microstructure and mechanical properties of open-cell porous Ti-6Al-4V fabricated by selective laser melting [J]. J. Alloys Compd., 2017, 713: 248
doi: 10.1016/j.jallcom.2017.04.190
|
34 |
Ji X M, Xiang S, Shen T, et al. Relation Between Solution Aging Parameters and Microstructure and Properties of TA12 Ti Alloy [J]. Hot Working Technol., 2015, 44(20): 172
|
|
冀宣名, 向 嵩, 沈 涛 等. TA12钛合金固溶时效参数与组织和性能的关系 [J]. 热加工工艺, 2015, 44(20): 172
|
35 |
Wang W, Zhou H X, Wang Q J. Tribological properties of graphene reinforced titanium matrix composites [J]. Ordnance Mater. Sci. Eng., 2019, 42(1): 26
|
|
王 伟, 周海雄, 王庆娟 等. 石墨烯增强钛基复合材料的摩擦学性能研究 [J]. 兵器材料科学与工程, 2019, 42(1): 26
|
36 |
Su S L, Rao Q H, He Y H. Compression mechanical properties of FeAl intermetallic compound porous material [J]. Rare Met. Mater. Eng., 2018, 47(08): 2453
|
37 |
Maskery I, Aboulkhair N T, Aremu A O, et al. A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting [J]. Mater. Sci. Eng. A Struct. Mater., 2016, 670: 264
doi: 10.1016/j.msea.2016.06.013
|
38 |
Jia P, Xu X T, Huang F, et al. Effect of pore structure on mechanical properties and fracture mechanism of porous materials [J].J. Northeast.Univ., Nat. Sci., 2021, 42(12): 1768
|
|
贾 蓬, 徐雪桐, 黄菲 等. 多孔材料的孔结构对其力学性能及破裂机制的影响 [J]. 东北大学学报(自然科学版), 2021, 42(12): 1768
|
39 |
Qiao J C, Xi Z P, Tang H P, et al. Review on compressive behavior of porous metals [J]. Rare Met. Mater. Eng., 2010, 39(3): 561
|
|
乔吉超, 奚正平, 汤慧萍 等. 金属多孔材料压缩行为的评述 [J]. 稀有金属材料与工程, 2010, 39(3): 561
|
40 |
GAO R N, Xiong Y Z, Zhang H, et al. Mechanical properties and biocompatibilities of radially graded porous titanium/tantalum fabricated by selective laser melting [J]. Rare Met. Mater. Eng., 2021, 50(1): 249
|
|
高芮宁, 熊胤泽, 张 航 等. SLM制备径向梯度多孔钛/钽的力学性能及生物相容性 [J]. 稀有金属材料与工程, 2021, 50(1): 249
|
41 |
Wu L, Fu T T, Yu X H, et al. Anodic oxidation characteristic of commercial pure titanium and its corrosion resistance [J]. Hot Working Technol., 2017, 46(4): 161
|
|
伍 俐, 付天琳, 于晓华 等. 工业纯钛的阳极氧化特性及其抗腐蚀性能研究 [J]. 热加工工艺, 2017, 46(4): 161
|
42 |
Li Y S. Study of antiseptic properties and biocompatibility of metallic biological [J]. Chin. J. Pharm. Anal., 2006, 26(7): 1028
|
|
李云胜. 金属生物材料的抗腐蚀性能和生物相容性研究 [J]. 药物分析杂志, 2006, 26(7): 1028
|
43 |
Zou T C, Ou Y, Zhu H. Effect of heat treatment on microhardness of AlSi7Mg alloy fabricated by selective laser melting [J]. Hot Working Technol., 2019, 48(24): 123
|
|
邹田春, 欧 尧, 祝 贺. 热处理对激光选区熔化AlSi7Mg合金显微硬度的影响 [J]. 热加工工艺, 2019, 48(24): 123
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|