Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (1): 51-56    DOI: 10.11901/1005.3093.2015.286
Orginal Article Current Issue | Archive | Adv Search |
Effects of Collagen Assembly Form on Biomimetic Mineralization
DING Shan1,2,**(), TANG Minjian3, CHEN Junjie1, ZHOU Changren1,2, LI Lihua1,2, LI Hong1,2
1. Department of Material Science and Engineering, Jinan University, Guangzhou 510632, China
2. Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
3. Patent Examination Cooperation Center of the Patent Office, SIPO, Guangzhou 510530, China
Cite this article: 

DING Shan, TANG Minjian, CHEN Junjie, ZHOU Changren, LI Lihua, LI Hong. Effects of Collagen Assembly Form on Biomimetic Mineralization. Chinese Journal of Materials Research, 2016, 30(1): 51-56.

Download:  HTML  PDF(4628KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To simulate the ordered texture of the collagen in natural bone tissue, membranes of collagen with hierarchically ordered texture were fabricated. The effect of templates made of collagen with and without ordered texture on the biomineralization process of calcium phosphate was comparatively studied in vitro. The morphology and structure of the deposited calcium phosphate on the collagen templates were characterized by using polarizing microscope (POM), scanning electron microscope (SEM), atomic force microscope (AFM) and X-ray diffraction (XRD). The results show that the collagen with hierarchically ordered texture has obvious effect on the biomimetic mineralization process; on which the deposited calcium phosphate is much more orderly and compact either in micro- or in macro scales. This result indicates that the collagen with hierarchically ordered texture is beneficial to the building of biomimetic bone tissues as materials for repair of human bone etc.

Key words:  composite      collagen      liquid crystal      biomineralization      ordered texture     
Received:  13 May 2015     
Fund: *Supported by the National Natural Science Foundation of China Nos.31400824 & 31270021
About author:  **To whom correspondence should be addressed, Tel: (020) 85226663, E-mail: tdingshan@jnu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.286     OR     https://www.cjmr.org/EN/Y2016/V30/I1/51

Fig.1  POM photos of texture of the 40 mg/mL collagen liquid crystal membrane mineralization in different time (a) before biomineralization, (b) biomineralization 6 h, (c) biomineralization 12 h, (d) biomineralization 24 h
Fig.2  Observation of alizarin red staining of collagen membrane after biomineralization 6 h (a) 40 mg/mL collagen membrane in polarizing microscope, (b) rotation 45°of Fig.a
Fig.3  AFM images of two types of collagen membrane biomineralization in different time (a) biomineralization 6 h of 10mg/mL collagen membrane; (b) biomineralization 6 h of 40 mg/mL collagen membrane; (c) biomineralization 12 h of 10 mg/mL collagen membrane; (d) biomineralization 12 h of 40 mg/mL collagen membrane; e, f, g, h are a, b, c, d partial view respectively
Fig.4  SEM images of two types of collagen membrane biomineralization 24 h, (a) non-liquid crystal phase of 10 mg/mL collagen membrane; (b) liquid crystal phase of 40 mg/mL collagen membrane
Fig.5  XRD patterns of two types collagen membrane before and after biomineralization (a) HA peaks according to JCPDS 9-432; non-liquid crystal of 10 mg/mL collagen membrane before biomineralization (b), 6 h (d), 12 h (f), 24 h (h); liquid crystal of 40 mg/mL collagen membrane before biomineralization (c), 6 h (e), 12 h (g), 24 h (j)
Fig.6  Content of Ca, P in SBF solution remaining after collagen membrane mineralization different time
6 h-10 mg/mL 6 h-40 mg/mL 12 h-10 mg/mL 12 h-40 mg/mL 24 h-10 mg/mL 24 h-40 mg/mL
1.36±0.0407 1.00±0.0378 1.12±0.0271 1.00±0.0369 1.29±0.0366 1.48±0.282
Table 1  Ca/P values deposition on the collagen membrane after mineralization different time
1 Cen L, Liu W, Cui L, Zhang W, Cao Y, Collagen tissue engineering: development of novel bomaterials and applications, Pediatr Res., 63, 492(2008)
2 Glowacki J, Mizuno S, Collagen scaffolds for tissue engineering, Biopolymers, 89, 338(2008)
3 TANG Minjian, DING Shan, ZHOU Changren, LI Lihua, Liquid crystal biomaterials, Chemical World, 12, 756(2010)
(唐敏健, 丁珊, 周长忍, 李立华, 液晶态生物材料, 化学世界, 12, 756(2010))
4 Giraud-Guille M-M, Besseau L, Herbage D, Gounon P, Optimization of collagen liquid crystalline assemblies: influence of sonic fragmentation, Journal of Structural Biology, 113, 99(1994)
5 Olszta M J, Douglas E P, Gower L B,Scanning electron microscopic analysis of the mineralization of type I collagen via a polymer-induced liquid-precursor (PILP) process, Calcif Tissue Int., 72, 583(2003)
6 Jee S-S, Thula T T, Gower L B, Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: Influence of polymer molecular weight, Acta Biomaterialia, 6, 3676(2010)
7 Liao S, Murugan R, Chan C K, Ramakrishna S, Processing nanoengineered scaffolds through electrospinning and mineralization suitable for biomimetic bone tissue engineering, Journal of the Mechanical Behavior of Biomedical Materials, 1, 252(2008)
8 Liao S, Watari F, Uo M, Ohkawa S, Tamura K, Wang W, The preparation and characteristics of a carbonated hydroxyapatite/collagen composite at room temperature, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 74B, 817(2005)
9 Zhang W, Liao S S, Cui F Z, Hierarchical self-assembly of nano-fibrils in mineralized collagen, Chemistry of Materials, 15, 3221(2003)
10 Al-Munajjed A A, Plunkett N A, Gleeson J P, Weber T, Jungreuthmayer C, Levingstone T, Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 90B, 584(2009)
11 TANG Minjian, DING Shan, MIN Xiang, JIAO Yanpeng, ZHOU Changren, LI Hong, Effects of Collagen Liquid Crystalline Films on Cell Culture, Chemical Journal of Chinese Universities, 32(12), 2891(2011)
(唐敏健, 丁珊, 闵翔, 焦延鹏, 周长忍, 李红, 胶原液晶膜的制备及对细胞生长的影响, 高等学校化学学报, 32, 2891(2011))
12 ZENG Qinghui, TIAN Ye, WU Di, ZHAO Yaowu, LI Lihua, ZHOU Changren, Effects of collagen films with liquid crystal-liked ordered structure on adhesion, Proliferation and Differentiation of Human Umbilical Cord Mesenchymal Stem Cells, Chemical Journal of Chinese Universities, 35, 1658(2014)
13 Kim H-M, Himeno T, Kawashita M, Kokubo T, Nakamura T, The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment, Journal of The Royal Society Interface, 1, 17(2004)
14 Jian B, Narula N, Li Q-y, Mohler Iii E R, Levy R J, Progression of aortic valve stenosis: TGF-β1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis, The Annals of Thoracic Surgery, 75, 457(2003)
15 Fullana M, Wnek G, Electrospun collagen and its applications in regenerative medicine, Drug Deliv. and Transl. Res., 2, (2012)
16 Nudelman F, Pieterse K, George A, Bomans P H H, Friedrich H, Brylka L J, The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors, Nat Mater., 9, 1004(2010)
17 Gonzalez M, Hernandez E, Ascencio J A, Pacheco F, Pacheco S, Rodriguez R, Hydroxyapatite crystals grown on a cellulose matrix using titanium alkoxide as a coupling agent, Journal of Materials Chemistry, 13, 2948(2003)
18 Tadic D, Epple M, A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone, Biomaterials, 25, 987(2004)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!