Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (7): 496-502    DOI: 10.11901/1005.3093.2015.196
Orginal Article Current Issue | Archive | Adv Search |
Dynamic Strain Aging of 316L Stainless Steel During Uniaxial Fatigue Process at 600℃
JIN Dan**(), LI Jianghua, TIAN Dajiang
School of Energy and Power Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
Cite this article: 

JIN Dan, LI Jianghua, TIAN Dajiang. Dynamic Strain Aging of 316L Stainless Steel During Uniaxial Fatigue Process at 600℃. Chinese Journal of Materials Research, 2016, 30(7): 496-502.

Download:  HTML  PDF(3991KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Low cycle fatigue tests for different strain ranges were conducted for 316L stainless steel at 600℃ under uniaxial loading. The results show that the dynamic strain aging (DSA) can be observed for three strain ranges. The concept of stress drop has been introduced to characterize the degree of serrated yielding for different strain ranges. The difference in the serrated yielding amount for different strain ranges can be attributed to the different interactions between solute atoms and dislocations. The maximum stress drop is related to the cyclic hardening or cyclic softening. DSA is related to the number of cycles. The material presents the obvious DSA for a few cycles and then followed by weak serrated yielding, even disappearing. However, the serrated yielding can be observed again before fatigue failure. The difference of serrated yielding can be attributed to the types of atom atmospheres at different cycles. A-type serrated wave was observed for smaller strain range, however, types of A, B, A+B, C, and B+C serrated wave can be found for different cycles and different phases in one cycle for larger strain range. Finally, the crack source region and crack propagation region of the fatigue fracture were observed by SEM.

Key words:  metallic materials      316L stainless steel      dynamic strain aging(DSA)      stress drop      serrated wave      atom atmospheres     
Received:  31 July 2015     
Fund: *Supported by National Natural Science Foundation of China No.11102119 and National Basic Research Program of China No 2011CB706504

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.196     OR     https://www.cjmr.org/EN/Y2016/V30/I7/496

Fig.1  Shape and geometry of specimen (mm)
C Si Mn Ni Cr Mo P S
0.012 0.31 1.65 12 16.87 2.05 0.037 0.012
Table 1  Chemical Composition of Material
Fig.2  Hysteresis loops for different strain ranges at half-life
Fig.3  Relationship between the maximum stress drop and cycle (a) relationship between the maximum stress and cycle (b)
Fig.4  Hysteresis loops of different cycles forΔε=0.7% (Note: (1)—Tensile stage, (2)、(4)—Unloading stage, (3)—Compressive stage, (5)—Stress drop, (6)—Single serration length (N, cycle number)
Fig.5  Hysteresis loops of different cycles forΔε=1.0%
Fig.6  Hysteresis loops of different cycles forΔε=1.2%
Fig.7  SEM results of crack source region for different strain ranges (a) (d) Δε=0.7% (b) (e)Δε=1.0%(c) (f) Δε=1.2%
Fig.8  SEM results of crack propagation region for different strain ranges (a) Δε=0.7%, (b) Δε=1.0%, (c) Δε=1.2%
1 S. G. Hong, S. B. Lee, T. S. Byun, Temperature effect on the low-cycle fatigue behavior of type 316L stainless steel: Cyclic non-stabilization and an invariable fatigue parameter, Materials science and engineering A, 457(1-2), 139(2007)
doi: 10.1016/j.msea.2006.12.035
2 A. H. Cottrell, A note on the Portevin-leChatelier effect, Philosophical Magazine, 44(355), 829(1953)
doi: 10.1080/14786440808520347
3 P. G.McCormick, A model for the Portevin-Le Chatelier effect in substitutional alloys, Acta Metallurgica, 20, 351(1972)
doi: 10.1016/0001-6160(72)90028-4
4 Van den Beukel A, Theory of the effect of dynamic strain aging on mechanical properties, physica status solidi, A30, 197(1975)
5 G. Schoeck, The Portevin-Le Chatelier-a kinetic theory, Acta Metallurgica, 32, 1229(1984)
doi: 10.1016/0001-6160(84)90129-9
6 XIAO Lingang, LI Xiaoqi, QIAN Kuangwu, The critical condition model of serrated yielding for bstitutional alloys, Science China, 4A, 423(1990)
(肖林钢, 李效琦, 钱匡武, 置换合金中出现锯齿屈服现象的临界条件模型, 中国科学, 4A, 423(1990)
7 L. G. Xiao, X. Q. Li, K. W. Qian, A Model of the occurrence of serrated yielding in substitutional alloys, Science in China, 33A, 1386(1990)
doi: 10.1093/qjmam/43.4.605
8 K. Kanazawa, K. Yamaguchi, S. Nishijima, Low Cycle Fatigue, ASTM-STP 942, 519(1998)
9 V. S. Srinivasan, R. Sandhya, K. Bhanu Sankara Rao, S. L. Mannan, K. S. Raghavan, Effects of temperature on the low cycle fatigue behaviour of nitrogen alloyed type 316L stainless steel, International Journal of Fatigue, 13(6), 471(1991)
10 V. S. Srinivasan, M. Valsan, R. Sandhya, K. Bhanu Sankara Rao, S. L. Mannan, D. H. Sastry, High temperature time-dependent low cycle fatigue behaviour of a type 316L(N) stainless steel, International Journal of Fatigue, 21(1), 11(1999)
11 S. G. Hong, K. O. Lee, S. B. Lee, Dynamic strain aging effect on the fatigue resistance of type 316L stainless steel, International Journal of Fatigue, 27(10-12), 1420(2005)
doi: 10.1016/j.ijfatigue.2005.06.037
12 H. F. Jiang, X. D. Chen, Z. C. Fan, J. Dong, H. Jiang, S. X. Lu, Dynamic strain aging in stress controlled creep-fatigue tests of 316L stainless steel under different loading conditions , Journal of Nuclear materials, 392(3), 494(2009)
doi: 10.1016/j.jnucmat.2009.04.014
13 HAN Pengcheng, TIAN Rong, SHEN Yanzhong, LI Zhigang, Dynamic Strain Aging in 316L Austenitic Stainless Steel During Tensile Test at High Temperature, Hot Working Technology, 41(16), 1(2012)
(韩鹏程, 田荣, 沈寅忠, 李志刚, 316L奥氏体不锈钢高温拉伸时的动态应变时效, 热加工工艺, 41(16), 1(2012))
14 SHEN Wenzhu, LI Chunfu, WANG Pengfei, CHEN Gongjian, Tensile behavior and flow stress calculation of 316L stainless steel at 25~350℃, Transactions of Materials and Heat Treatment, 33(9), 49(2012)
(申文竹, 李春福, 王朋飞, 陈功剑, 316L不锈钢25~350℃中的拉伸行为及流变应力计算, 材料热处理学报, 33(9), 49(2012))
15 QIAN Kuangwu, LI Xiaoqi, XIAO Lingang, CHEN Wenzhe, ZHANG Haoguo, PENG Kaiping, Dynamic strain aging phenomenon in metals and alloys, Journal of Fuzhou University, 29(6), 8(2001)
(钱匡武, 李效琦, 萧林钢, 陈文哲, 张好国, 彭开萍, 金属和合金中的动态应变时效现象, 福州大学学报, 29(6), 8(2001))
doi: 10.3969/j.issn.1000-2243.2001.06.003
16 HAN Guoming, CUI Chuanyong, GU Yuefeng, HU Zhuangqi, SUN Xiaofeng, Investigation of Temperature Dependence of PLC Effect in A Nickel Base Superalloy, Acta Metallurgica Sinica, 49(10), 1243(2013)
(韩国明, 崔传勇, 谷月峰, 胡壮麒, 孙晓峰, 一种镍基高温合金PLC效应的温度依赖性研究, 金属学报, 49(10), 1243(2013))
doi: 10.3724/SP.J.1037.2013.00108
17 HU Qi, ZHANG Qingchuan, FU Shihua, CAO Pengtao, GONG Ming, Effect of precipitation on Portevin-Le Chatelier effect in Al-Mg alloys, Acta Physica Sinica, 60(9), 514(2011)
(胡琦, 张青川, 符师桦, 曹鹏涛, 龚明, 析出相在铝镁合金Portevin-Le Chatelier效应中的作用研究, 物理学报, 2011, 60(9 ), 514(2011))
doi: 10.3969/j.issn.1006-2890.2014.15.185
18 Q. Q. Fu, Y. S. Li, G. W. Liu, H. Li, Low Cycle Fatigue Behavior of AZ91D Magnesium Alloy Containing Rare-Earth Ce Element, Procedia Engineering, 27, 1794(2012)
doi: 10.1016/j.proeng.2011.12.652
19 M. S. Pham, S. R. Holdsworth, Dynamic strain ageing of AISI 316L during cyclic loading at 300℃: Mechanism, evolution, and its effects, Materials Science and Engineering: A, 556, 122(2012)
doi: 10.1016/j.msea.2012.06.067
20 P. Rodriguez, Serrated plastic flow, Bulletin of Materials Science, 6(4), 653(1984)
21 G. Sudhakar Rao, J. K. Chakravartty, Saibaba Nudurupati, G. S. Mahobia, Kausik Chattopadhyay, N. C. Santhi Srinivas, Vakil Singh, Low cycle fatigue behavior of Zircaloy-2 at room temperature , Journal of Nuclear materials, 441(1-3), 455(2013)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!