Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (3): 235-240    DOI: 10.11901/1005.3093.2014.494
Current Issue | Archive | Adv Search |
Property of Al-Zn-Mg-(Cu) Alloy after Linear Heating Aging Treatment
Miaoxia ZENG,Zhenming LIN,Wentao LI,Man JIN()
School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
Cite this article: 

Miaoxia ZENG,Zhenming LIN,Wentao LI,Man JIN. Property of Al-Zn-Mg-(Cu) Alloy after Linear Heating Aging Treatment. Chinese Journal of Materials Research, 2015, 29(3): 235-240.

Download:  HTML  PDF(3937KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effect of linear heating aging process and the Cu content on the performance and the formation of precipitates of Al-Zn-Mg-(Cu) alloy was investigated by means of differential scanning calorimeter (DSC), hardness tester, transmission electron microscopy(TEM) and three-dimensional atom probe (3DAP). The results show that with the increase of the aging temperature the hardness rises firstly and then decreases after reaching a peak. After aging at every selected temperature of the linear heating aging treatment process, all the relevant hardness of the Al-Zn-Mg-Cu alloy is higher than that of the Al-Zn-Mg alloy. After aging at peak point by linear heating, the main precipitates are η' phase, while there exists small quantities of η phase and GP zone for the two alloys Al-Zn-Mg and Al-Zn-Mg-Cu. However the addition of Cu may induces certain change of the composition and morphology of the precipitates and delay their transition from metastable state to stable state.

Key words:  metallic materials      Al-Zn-Mg-(Cu) alloy      linear heating      aging process      precipitate     
Received:  12 September 2014     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.494     OR     https://www.cjmr.org/EN/Y2015/V29/I3/235

Alloy Zn Mg Cu Zr Si Fe Al
Al-Zn-Mg 7.82 1.57 0.003 0.139 0.031 0.02 Bal.
Al-Zn-Mg-Cu 7.8 1.59 1.64 0.14 0.026 0.07 Bal.
Table 1  Chemical compositions of alloys (%, mass fraction)
Fig.1  DSC curves of as-solution treated and quenched alloy (scanning speed 10k/min)
Fig.2  Hardness of Al-Zn-Mg-(Cu) alloy during linear heating aging at rate of 20℃/h
Fig.3  TEM images of Al-Zn-Mg alloy after linear heating to 180℃ aging (a) TEM image; (b) HRTEM image
Fig.4  TEM images of Al-Zn-Mg-Cu alloy after linear heating to 190℃ aging. (a) TEM image; (b) HRTEM image
Fig.5  After linear heating to 180℃ aging, 3DAP image of the overall morphology (a) and segregation of Mg clusters (b) and Zn clusters (c) of Al-Zn-Mg alloy (80 nm×20 nm×20 nm)
Fig.6  After linear heating to 180℃, 3DAP image of the overall morphology and elements segregation of Al-Zn-Mg-Cu alloy (a) the overall morphology; (b) 3DAP image of Mgclusters; (c) 3DAP image of Znclusters; (d) 3DAP image of Cu clusters (80×30×30 nm)
Alloy Cluster Size range (atoms) Composition range (%, atom fraction) Zn/Mg (Zn+Cu)/Mg Number ratio(%)
Zn Mg Cu
Al-Zn-Mg GP 20-58 8-50 7-38 1.52 8.5
η' 63-1011 40-624 23-387 1.81 73.6
η 532-2454 351-1601 179-853 1.87 17.5
Al-Zn-Mg-Cu GP 20-84 9-28 2-24 0-8 1.45 1.83 30.3
η' 61-1608 40-938 15-550 3-120 1.87 2.13 54.4
η 1053-3436 607-2347 328-1214 73-271 1.96 2.19 15.3
Table 2  Shape, size and composition of two alloys through linear heating aging treatment
Fig.7  Enlarged spherical clusters (8 nm×10 nm×9 nm) (a) and composition-distance image (b) of Al-Zn-Mg alloy
Fig.8  Enlarged rod-like cluster (a) and composition-distance image (b) of Al-Zn-Mg alloy
1 WANG Hongbin,HUANG Jinfeng, YANG Bin, Current statusand future directions of ultrahigh strength Al-Zn-Mg-Cu aluminum alloys, Materials Review, 17(9), 1(2003)
1 (王洪斌, 黄进峰, 杨 滨, Al-Zn-Mg-Cu 系超高强度铝合金的研究现状与发展趋势, 材料导报, 17(9), 1(2003))
2 D. K. Xu, N. Birbilis, P. A .Rometsch, B.C. Muddle,Effect of solution treatment on the corrosion behaviour of aluminium alloy AA7150: Optimisation for corrosion resistance, Corrosion Science, 53(1), 217(2011)
3 J .C .Willams,Progress in structural materials for aerospace systems, Acta Materialia, 51(19), 5775(2003)
4 DONG Xianjuan,LI Hongying, Study on aging process for large 7475 aluminum alloy, Forgings Aluminum Fabrication, 163(4), 22(2005)
4 (董显娟, 李红英,7475 铝合金大型锻件时效工艺研究, 铝加工, 163(4), 22(2005))
5 T. Marlaud, A.Deschamps, F. Biey, W. Lefebver, B. Baroux,Influence of alloy composition and heat treatment on precipitate composition in Al-Zn-Mg-Cu alloys, Acta Materialia, 58(1), 248(2010)
6 I. J. Polmear,A trace element effect in alloys based on the Al-Zn-Mg system, Nature, 186(7), 303(1960)
7 I. J. Polmear,The ageing characteristics of complex Al-Zn-Mg alloys, distinctive effects of copper and silver on the ageing mechanism, Journal Institute of Metals, 89(2), 51(1960)
8 A. Deschamps, F. Livet, Y. Bréchet,Influence of predeformation on ageing in an Al-Zn-Mg alloy: I. Microstructure evolution and mechanical properties, Acta Materialia, 47(1): 281(1998)
9 R. Ferragut, A. Somaza, A. Tolley,Microstructural evolution of 7012 alloy during the early stages of artificial ageing, Acta Materialia, 47(17), 4355(1994)
10 L. K. Berg, V. Hansen, X. Z. Li, M. K. Wedel, G. Waterloo, D. Schryvers, L. R. Wallenberg,GP-zone in Al-Zn-Mg alloys and their role in artificial aging, Acta Materialia, 49(17), 3443(2001)
11 J. T. Staley,Method and process of non-isothermal for aluminum alloys, US Patent, 0237113Al(2007)
12 FANG Xu,Effects of Cu content on structures and properties of Al-Zn-Mg alloys, Master Thesis, Central South University(2012)
12 (方 旭,Cu对Al-Zn-Mg合金时效微观组织及性能影响的研究, 硕士论文, 中南大学(2012))
13 J.Z. Liu, J.H. Chen, X.B. Yang, S. Ren,Revisiting the precipitation sequence in Al-Zn-Mg-based alloys by high-resolution transmission electron microscopy, Acta Materialia, 63(11), 1061(2010)
14 M. Nicolas, A. Deschamps,Characterization and modeling of precipitate evolution in an Al-Zn-Mg alloy during non-isothermal heat treatments, Acta Materialia, 51(20), 6077(2003)
15 M. Murayama, K. Hono,Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys, Acta Materialia, 47(5), 1537(1999)
16 S. K. Maloney, K. Hono, I. J. Polmear, S. P. Ringer,The chemistry of precipitates in an aged Al-2.1Zn-1.7Mg at.% alloy, Scripta Materialia, 41(10), 1031(1999)
17 G. Sha, A. Gerezo,Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050), Acta Materialia, 52(15), 4503(2004)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!