Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (12): 881-886    DOI: 10.11901/1005.3093.2014.432
Current Issue | Archive | Adv Search |
Martensitic Transformation and Crystal Structure of Ni-Fe-Ga Ferromagnetic Shape Memory Alloys
Jing BAI1,2,**(),Xinli WANG1,Jianglong GU1,Yanbo LI1,Xiang ZHAO1,Liang ZUO1
1. Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110819
2. Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao Branch, Qinhuangdao 066004
Cite this article: 

Jing BAI,Xinli WANG,Jianglong GU,Yanbo LI,Xiang ZHAO,Liang ZUO. Martensitic Transformation and Crystal Structure of Ni-Fe-Ga Ferromagnetic Shape Memory Alloys. Chinese Journal of Materials Research, 2014, 28(12): 881-886.

Download:  HTML  PDF(3579KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A moderate amount of g-phase precipitates in Ni-Fe-Ga ferromagnetic shape memory alloy can drastically improve its toughness. The martensitic transformation temperature, the microstructure and the crystal structure of the complicated alloys Ni50+xFe25-xGa25 (x=3, 4.5, 6) were investigated by DSC, XRD, SEM and TEM techniques. The results showed that the martensitic transformation temperature Tm went up along with the increasing Ni content; the Ni56Fe19Ga25 alloy exhibited a microstructure composed of fine and clear martensite lathes of several martensitic variants in different orientation. The 6M+14M mixed martensite and g-phases were detected in the Ni56Fe19Ga25 alloy by XRD and TEM. Among the investigated alloys, the Ni56Fe19Ga25 alloy had not only the most appropriate martensitic transformation temperature for practical application, but also the suitable crystal structure for facilitating the magnetostrictive strain.

Key words:  metallic materials      functional material      Ni-Fe-Ga      ferromagnetic shape memory alloys      crystal structure      microstructure      martensitic transformation     
Received:  19 August 2014     
Fund: *Supported by National Natural Science Foundation of China No. 51301036, Natural Science Foundation of Hebei Province No.E2013501089, Research Fund for the Doctoral Program of Higher Education of China No.20120042110021 and the Fundamental Research Funds for the Central Universities No.N130523001.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.432     OR     https://www.cjmr.org/EN/Y2014/V28/I12/881

Alloy Characteristic martensitic transformation temperature /℃ Martensitic transformation temperature /℃ Latent heat Q /(J/g)
Ms Mf As Af Tm A→M M→A
Ni53Fe22Ga25 -36.71 -43.76 -35.23 -28.71 -36.1 6.10 5.90
Ni54.5Fe20.5Ga25 26.09 18.23 26.18 33.34 25.96 9.07 8.67
Ni56Fe19Ga25 72.02 67.73 89.78 97.55 81.77 4.73 4.83
Table 1  Characteristic martensitic transformation temperature and latent heat of Ni50+xFe25-xGa25 (x=3, 4.5, 6) alloys (atomic fraction, %)
Alloy Matrix γ phase
Ni Fe Ga Ni Fe Ga
Ni53Fe22Ga25 52.26 20.65 27.09 51.95 31.53 16.51
Ni54.5Fe20.5Ga25 53.60 18.81 27.59 54.49 28.73 16.78
Ni56Fe19Ga25 54.19 17.72 28.09 56.15 26.73 17.12
Table 2  Phase composition of Ni50+xFe25-xGa25(x=3, 4.5, 6) alloys
Fig.1  Micrographs of Ni50+xFe25-xGa25(x=3, 4.5, 6) alloys, (a) Ni53Fe22Ga25 alloy, (b) Ni54.5Fe20.5Ga25 alloy, (c) Ni56Fe19Ga25 allloy
Fig.2  SEM images of Ni56Fe19Ga25 alloy
Fig.3  XRD spectrum of Ni56Fe19Ga25 alloy
Fig.4  TEM bright field image (a) and selected area electron diffraction pattern (b) of 6M martensite in Ni56Fe19Ga25 alloy
Fig.5  TEM bright field image (a) and selected area electron diffraction pattern (b) of 14M martensite in Ni56Fe19Ga25 alloy
1 A. Sozinov, A. A. Likhachev, N. Lanska, K. Ullakko,Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase, Applied Physics Letters, 80, 1746(2002)
2 K. Oikawa, T. Ota, T. Ohmori, Y. Tanaka, H. Morito, A. Fujita, R. Kainuma, K. Fukamichi, K. Ishida,Magnetic and martensitic phase transitions in ferromagnetic Ni-Ga-Fe shape memory alloys, Applied Physics Letters, 81, 5201(2002)
3 Y. Li, C. B. Jiang, T. Liang, Y. Q. Ma,Martensitic transformation and magnetization of Ni-Fe-Ga ferromagnetic shape memory Alloys, Scripta Materialia, 48, 1255(2003)
4 Z. H. Liu, M. Zhang, Y. T. Cui, Y. Q. Zhou, W. H. Wang, G. H. Wu, X. X. Zhang, G. Xiao,Martensitic transformation and shape memory effect in ferromagnetic Heusler alloy Ni2FeGa, Applied Physics Letters, 82(3), 424(2003)
5 K. Oikawa, T. Ota, Y. Sutou, T. Ohmori,Magnetic and martensitic phase transformation in a Ni54Ga27Fe19 alloy, Materials Transaction, 3(9), 2360(2002)
6 T. Omori, N. Kamiya, Y. Sutou, K. Oikawa,Phase transformation in Ni-Ga-Fe ferromagnetic shape memory alloys, Materials Science and Engineering A, 378, 403(2004)
7 J. Q. Li, Z. H. Liu, H. C. Yu, M. Zhang,Martensitic transition and structural modulations in the Heusler alloy Ni2FeGa, Solid State Communications, 126, 323(2003)
8 H. X. Zheng. M. X. Xia, J. Liu, J. G. Li,Martensitic transformation of highly undercooled Ni-Fe-Ga magnetic shape memory alloys, Journal of Alloys and Compounds, 388(2), 173(2005)
9 P. J. Brown, J. Crangle, T. Kanomata, M. Matsumoto, K.-U. Neumann, B. Ouladdiaf, K. R. A. Ziebeck,The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa, Journal of Physics: Condensed Matter, 14, 10159(2002)
10 Y. Sutou, N. Kamiya, T. Omori, R. Kainuma,Stress-strain characteristics in Ni-Ga-Fe ferromagnetic shape memory alloys, Applied Physics Letter, 84(8), 1275(2004)
11 K. Oikawa, T. Ota, T. Ohmori, Y. Tanaka, H. Morito, A. Fujita, R. Kainuma, K. Fukamichi, K. Ishida,Magnetic and martensitic phase transitions in ferromagnetic Ni-Ga-Fe shape memory alloys, Applied Physics Letters, 81, 5201(2002)
12 T. M. Heil, M. A. Willard, W. T. Reynolds Jr,The effects of composition and aging on the martensite and magnetic transformations in Ni-Fe-Ga ferromagnetic shape memory alloys, Metallurgical and materials transactions. A, 38(4), 752(2007)
13 Z. H. Liu, H. Liu, X. X. Zhang, M. Zhang,Martensitic transformation and magnetic properties of Heusler alloy Ni-Fe-Ga ribbon, Physics Letters A, 329, 214(2004)
14 ZHU Zhiyong,Study on phase transition and magnetization of ferromagnetic shape memory alloys Ni51.5Mn25Ga23.5 and Ni2FeGa, Master degree thesis (Jilin University, 2005)
14 (朱志永, 铁磁性形状记忆合金Ni51.5Mn25Ga23.5和Ni2FeGa的相变和磁性研究, 硕士学位论文 (吉林大学, 2005))
15 J. Pons, V. A. Chernenko, R. Santamarta, E. Cesari,Crystal structure of martensitic phases in Ni-Mn-Ga shape memory alloys, Acta Materialia, 48, 3027(2000)
16 H. Morito, A. Fujita, K. Fukamichi, R. Kainuma, K. Ishida,Magnetic-field-induced strain of Fe–Ni–Ga in single-variant state, Applied Physics Letters, 83, 4993(2003)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!