Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (5): 371-376    DOI: 10.11901/1005.3093.2014.382
Current Issue | Archive | Adv Search |
Effect of Sintering Conditions on Texture Formation of Si3N4 Ceramic Shaped up in a Strong Magnetic Field
Zhigang YANG1,Jianbo YU1,Chuanjun LI1,Kang DENG1,Zhongming REN1,**(),Yunbo ZHONG1,Qiuliang WANG2,Yinming DAI2,Hui WANG2
1. Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University,
Shanghai 200072, China
2. Institute of Electrical Engineering, Chinese Academy of Science, Beijing 100190, China
Cite this article: 

Zhigang YANG,Jianbo YU,Chuanjun LI,Kang DENG,Zhongming REN,Yunbo ZHONG,Qiuliang WANG,Yinming DAI,Hui WANG. Effect of Sintering Conditions on Texture Formation of Si3N4 Ceramic Shaped up in a Strong Magnetic Field. Chinese Journal of Materials Research, 2015, 29(5): 371-376.

Download:  HTML  PDF(3852KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Si3N4 ceramics with preferential texture along a or b axis were shaped up by gel-casting in a magnetic field of 6T and then pressureless sintered. Effect of the sintering temperature and time on the texture formation of the Si3N4 ceramics was investigated. It was found that the phase transformation of α to β was completed for the Si3N4 ceramics prepared by the present process. With the increasing sintering temperature the texture formation of Si3N4 ceramics may be enhanced, i.e. of which the degree of texture increased from 0.40 at 1700℃ to 0.76 at 1800℃. The extension of sintering time at 1750℃ had few effect on texture development of Si3N4 ceramics.

Key words:  inorganic nonmetallic materials      silicon nitride      texture      gel-casting      strong magnetic field     
Received:  25 July 2014     
Fund: *Supported by National Natural Science Foundation of China Nos. 50902140&50872142/E0207.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.382     OR     https://www.cjmr.org/EN/Y2015/V29/I5/371

Fig.1  Schematic diagram of experimental equipment
Fig.2  XRD patterns of the samples prepared at 1750℃
Fig.3  XRD patterns of the samples prepared by gel-casting in 6T and subsequent sintering at 1700℃ (a), 1750℃ (b), 1800℃ (c) for 2 h
Fig.4  Lotgering factor of the samples obtained at different temperatures for 2 h
Fig.5  Fracture morphology of the samples obtained at different temperatures for 2 h (fracture surface perpendicular to the magnetic field) (a) 1700℃ (b) 1750℃ (c) 1800℃
Fig.6  Relative density of the samples obtained at different temperatures for 2 h
Fig.7  Bending strength of the samples obtained at different temperatures for 2 h
Fig.8  XRD patterns of the samples prepared by casting in 6T and sintering at 1750℃ for different time
Fig.9  Lotgering factor of the samples obtained by casting in 6T and sintering at 1750℃ for different time
1 N. Konedo, Y. Suzuki, T. Ohji,Superplastic sinter-forging of silicon nitride with anisotropic microstructure formation, J. Am. Ceram. Soc., 82(4), 1067(1999)
2 M. Nakamura, K. Hirao, Y. Yamauchi, S. Kanzaki, Tribological properties of unidirectionally aligned silicon nitride. J. Am. Ceram. Soc., 84(11), 2579(2001)
3 Y. P. Zeng, J. F. Yang, N. Kondo, T. Ohji, H. Kita, S. Kanzaki,Fracture energies of tape -cast silicon nitride with beta-Si3N4 seed addition, J. Am. Ceram. Soc., 88(6), 1622(2005)
4 H. Morikawa, K. Sassa, S. Asai,Control of precipitating phase alignment and crystal orientation by imposition of a high magnetic field, Mater. Trans., JIM, 39(8), 814(1998)
5 H. Yamada, T. S. Suzuki, T. Uchikoshi, M. Hozumi, T. Saito, Y. Sakka,Analysis of abnormal grain growth of oriented LiCoO2 prepared by slip casting in a strong magnetic field, J. Euro. Ceram. Soc., 33(15), 3059(2013)
6 H. B. Zhang, C. F. Hu, K. Sato, S. Grasso, M. Estili, S. Q. Guo, K. Morita, H. Yoshida, T. Nishimura, T.S. Suzuki, M.W. Barsoum, B.N. Kim, Y. Sakka,Tailoring Ti3AlC2 ceramic with high anisotropic physical and mechanical properties, J. Euro. Ceram. Soc., 35(1), 393(2015)
7 T. S. Suzuki, T. Uchikoshi, Y. Sakka,Control of texture in alumina by colloidal processing in a strong magnetic field, Sci. Technol. Adv. Mat., 7(4), 356(2006)
8 T. Uchikoshi, T. S. Suzuki, Y. Sakka,Fabrication of c-axis oriented zinc oxide by electrophoretic deposition in a rotating magnetic field, J. Euro. Ceram. Soc., 30(7), 1975(2004)
9 S. Tanaka, A. Makiya, Z. Kato,K, Uematsu, C-axis oriented ZnO formed in a rotating magnetic field with various rotation speeds, J. Euro. Ceram. Soc., 29(5), 955(2009)
10 S. Asai, K. Sassa, M. Tahashi,Crystal orientation of non-magnetic materials by imposition of a high magnetic field, Sci. Technol. Adv. Mat., 4(5), 455(2003)
11 S. Q. Li, K. Sassa, S. Asai,Textured crystal growth of Si3N4 ceramics in high magnetic field, Mater. Lett., 59(2), 153(2005)
12 S. Q. Li, K. Sassa, S. Asai,Fabrication of textured Si3N4 ceramics by slip casting in a high magnetic field, J. Am. Ceram. Soc., 87(7), 1384(2004)
13 X. W. Zhu, T. S. Suzuki, T. Uchikoshi, T. Nishimura, Y. Sakka,Texture development in Si3N4 ceramics by magnetic field alignment during slip casting, J. Ceram. Soc. Japan., 114(1335), 979(2006)
14 X. W. Zhu, Y. Sakka, T. S. Suzuki, T. Uchikoshi, S. Kikkawa,The c-axis texturing of seeded Si3N4 with β-Si3N4 whiskers by slip casting in a rotating magnetic field, Acta. Mater., 58(1), 146(2010)
15 J. L. Yang, C. L. Dai, Y. Huang,Controllable forming technology in gel-casting, Mater. Sci. Forum., 475(2), 1325(2005)
16 F. K. Lotgering,Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I, J. Inorg. Nucl. Chem., 9(2), 113(1959)
17 Z. G. Yang, J. B. Yu, K. Deng, L. Lan, H. Wang, Z. M. Ren, Q. L. Wang, Y. M. Dai, H. Wang,Fabrication of textured Si3N4 ceramics with β-Si3N4 powders as raw material by gel-casting under strong magnetic field, Mater. Lett., 135, 218(2014)
18 J. F. Yang, Z. Y. Deng, T. Ohji,Fabrication and characterisation of porous silicon nitride ceramics using Yb2O3 as sintering additive, J. Euro. Ceram. Soc., 23(2), 371(2003)
19 XU Xin, HUANG Liping, CHEN Yuan, FU Xiren, Pressureless sintering of refractory grade β-Si3N4 powder and mechanical properties of the sintered materials, J. Inorg. Mater., 14(3), 403(1999)
19 (徐 鑫, 黄莉萍, 陈 源, 符锡仁, 低纯度β-Si3N4粉末的无压烧结及其性能, 无机材料学报, 14(3), 403(1999))
20 F. L. Riley,Silicon Nitride and Related Materials, J. Am. Ceram. Soc., 83(2), 245(2000)
21 H. Yokota, M. Ibukiyama,Microstructure tailoring for high thermal conductivity of β-Si3N4 ceramics, J. Am. Ceram. Soc., 86(1), 197(2003)
[1] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[2] LIU Dongyang, TONG Guangzhe, GAO Wenli, WANG Weikai. Anisotropy of 2060 Al-Li Alloy Thick Plate[J]. 材料研究学报, 2023, 37(3): 235-240.
[3] WANG Wei, ZHOU Shanqi, GONG Penghui, ZHANG Haoze, SHI Yaming, WANG Kuaishe. Effect of Anneal Treatment on Microstructure, Texture and Mechanical Properties of TC4 Alloy Plates[J]. 材料研究学报, 2023, 37(1): 70-80.
[4] YU Chao, XING Guangchao, WU Zhengmin, DONG Bo, DING Jun, DI Jinghui, ZHU Hongxi, DENG Chengji. Effect of Submicron Al2O3 Addition on Sintering Process of Recrystallized Silicon Carbide[J]. 材料研究学报, 2022, 36(9): 679-686.
[5] NING Bo, LI Zhichao, WU Huibin, ZHANG Bingjun, HUANG Manli, DING Chao. Mechanism of Improving Low Temperature Impact Toughness of 09MnNi Vessel Steel[J]. 材料研究学报, 2022, 36(9): 660-666.
[6] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
[7] OUYANG Jie, LI Xue, ZHU Yuxin, CAO Fu, CUI Yanjuan. Enhanced Photocatalytic Hydrogen Production and Carbon Dioxide Reduction[J]. 材料研究学报, 2022, 36(2): 152-160.
[8] YUAN Qiangqiang, WANG Zhigang, JIANG Yongfang, ZHANG Yinghui, HUANG Ankang, YE Jieyun. Effect of Warm-rolled Temperature on Microstructure and Texture in Cr-Ti-B Low Carbon Steel[J]. 材料研究学报, 2022, 36(2): 81-89.
[9] ZENG Renfen, JIANG Xiangping, CHEN Chao, HUANG Xiaokun, NIE Xin, YE Fen. Effects of Er3+-doping on Performance of Bi3Ti1.5W0.5O9-Bi4Ti3O12 Intergrowth Lead-free Piezoceramics[J]. 材料研究学报, 2022, 36(10): 760-768.
[10] FENG Kai, L Guangzhe, L Bin. Synthesis and Upconversion Luminescence of Ultrafine (Lu0.5In0.5)2O3:Tm3+,Yb3+ Powders[J]. 材料研究学报, 2021, 35(8): 591-596.
[11] GU Jiaqing, TANG Weineng, XU Shiwei. Microstructure Evolution During Tensile Deformation of an Extruded Mg-0.4Zn Alloy Plate[J]. 材料研究学报, 2021, 35(7): 553-560.
[12] XI Guoqiang, QIU Jianke, LEI Jiafeng, MA Yingjie, YANG Rui. Room Temperature Creep Behavior of Ti-6Al-4V Alloy[J]. 材料研究学报, 2021, 35(12): 881-892.
[13] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[14] SONG Guihong, LI Xiuyu, LI Guipeng, DU Hao, HU Fang. Thermoelectric Properties of Mg-rich Mg3Bi2 Films Prepared by Magnetron Sputtering[J]. 材料研究学报, 2021, 35(11): 835-842.
[15] ZHOU Shuyu,JIN Xiaozhe,LIU jia,TIAN Ruixue,WU Aimin,HUANG Hao. Storage and Transport Properties of Sodium-ions of Carbon-constraint NiS2 Nanostructure as Cathode for Na-S Batteries[J]. 材料研究学报, 2020, 34(3): 191-197.
No Suggested Reading articles found!