Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (9): 689-696    DOI: 10.11901/1005.3093.2014.216
Current Issue | Archive | Adv Search |
Micro-simulation of Solidification on Mild Steel of Welding Pool Base on the Method of Cellular Automata
Min ZHANG(),Aiyan XU,Qiang WANG,Lulu LI
School of Material Science and Engineering, Xi’an University of Technology, Xi’an 710048
Cite this article: 

Min ZHANG,Aiyan XU,Qiang WANG,Lulu LI. Micro-simulation of Solidification on Mild Steel of Welding Pool Base on the Method of Cellular Automata. Chinese Journal of Materials Research, 2014, 28(9): 689-696.

Download:  HTML  PDF(4698KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The present model, which described the nucleation and growth of crystals and diffusion of solute atoms during solidification, is extended by means of cellular automata method to simulate the growth morphology of dendrites and the solute distribution during the solidification process of welding pool of Fe-0.05%C binary alloy. Meanwhile, the phase distribution after solidification was simulated on basis of the Fe-C binary phase diagram and according to the principle that different solute concentration corresponds to different phase. Besides, a mathematical model is acquired to describe the relationship between the ratio of α+P to P+Fe3C with the parameters such as the solute concentration, the cooling rate and the basal number of nucleation. The results show that the simulated results of the microstructure distribution of weld mild steel is in good agreement with the experimental ones. Therefore, the microstructure model based on changes of solute concentration can effectively predict the real microstructure of weld joint of mild steel. The impact of solute concentration, cooling rate, and the basal number of nucleation on the ratio of α+P to P+Fe3C is much obvious, but the effect of each factor is independent relatively. The deduced regressive equation of microstructure control is highly significant, and it can provide data as reference for microstructure optimization of the weld joint.

Key words:  metallic materials      welding pool      cellular automata      solute concentration      phase structure     
Received:  28 April 2014     
Fund: *Supported by National Nature Science Foundation of China No.51274162, the National High Technology Research and Development Program of China No.2013AA031303, the Natural Science Foundation of Shaanxi Province No. 2012JM6003, the Incubation of the Education Department of Shanxi Province No.2012JC16 and the Science and Technology Program of Xi'an No. CX12163.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.216     OR     https://www.cjmr.org/EN/Y2014/V28/I9/689

Fig.1  Solidification phase diagram of Fe-C binary alloy
Temperature Name Equation
1493<T<1538 Curve a C l = - 9731.8 + 19.159 T - 0.0126 T 2 + 2.744 × 10 - 6 T 3
m L 1 = ? T L ? C L = ( 19.159 - 0.0252 T + 8.232 × 10 - 6 T 2 ) - 1
Curve b C S = - 56.61 + 0.116 T - 7.734 × 10 - 5 T 2 + 1.69 × 10 - 8 T 3
m S 1 = ? T S ? C S = ( 0.116 - 1.547 × 10 - 4 T + 5.07 × 10 - 8 T 2 ) - 1
Partition coefficient of solid-liquid phases k 1 = m L 1 m S 1 = 0.116 - 1.547 × 10 - 4 T + 5.07 × 10 - 8 T 2 19.159 - 0.0252 T + 8.232 × 10 - 6 T 2
1153<T<1493 Curve c C l = - 13.465 + 0.0507 T - 4.089 × 10 - 5 T 2 + 8.864 × 10 - 9 T 3
m L 2 = ? T L ? C L = ( 0.0507 - 8.178 × 10 - 5 T + 2.659 × 10 - 8 T 2 ) - 1
Curve d C S = - 5.084 + 0 . 02 6 T - 2.432 × 10 - 5 T 2 + 6.203 × 10 - 9 T 3
m S 2 = ? T S ? C S = ( 0 . 026 - 4.864 × 10 - 5 T + 1.861 × 10 - 8 T 2 ) - 1
Partition coefficient of solid-liquid phases k 2 = m L 2 m S 2 = 0.026 - 4.864 × 10 - 5 T + 1.861 × 10 - 8 T 2 0.0507 - 8.178 × 10 - 5 T + 2.659 × 10 - 8 T 2
Table 1  Results of fitting equation
Fig.2  Dendritic morphology of Fe-0.05%C alloy under different growth time (a) t=0.025 s, (b) t=0.5 s, (c) t=1 s, (d) t=2.5 s
Fig.3  Solute concentration of Fe-0.05%C alloy under different growth time (a) t=0.025 s, (b) t=0.5 s, (c) t=1 s, (d) t=2.5 s
Fig.4  simulation and experiment results at the end of solidification of weld pool (a) dendritic morphology, (b) solute concentration in the solid phase, (c) microstructure of simulation, (d) Microstructure of experiment
Fig.5  Proportional change of α+P and P+Fe3CII, (a) (b) (c) is effect results at different solute concentration, cooling rate and number of nucleation substrate
Source of variance Freedom Quadratic sum Mean square error F value Pr>F
one term 3 115.039222 0.7581 39.93 <0.0001
quadratic term 3 28.058494 0.1849 9.74 0.0035
residue 9 8.642282 0.960254
total 15 151.739998
Table 2  Regression analysis of variance
1 Y. Z. He, H.L. Ding, L.F. Liu, K. Shin,Computer simulation of 2D grain growth using a cellular automata model based on the lowest energy principle, Materials Science and Engineering A, 429(1-2), 236(2006)
2 JIANG Hongxiang,ZHAO Jiuzhou, A three-dimensional cellular automaton simulation for dendritic growth, Acta metallurgica Sinica, 47(9), 1099(2011)
2 江鸿翔, 赵九州, 枝晶生长的三维元胞自动机模拟, 金属学报, 47(9), 1099(2011)
3 BU Xiaobing, LI Luoxing, ZHANG Liqiang, ZHU Biwu, XU Rong, WANG Shuiping, Calculation of liquid phase diffusion coefficient in microstructure simulation of Al-2%Cu binary alloy, The Chinese Journal of Nonferrous Metals, 23(5), 1189(2013)
3 卜晓兵, 李落星, 张立强, 朱必武, 徐 戎, 王水平, 二元合金微观组织模拟中液相扩散系数计算, 中国有色金属学报, 23(5), 1189(2013)
4 A. Anca, A. Cardona, J. Risso, V. D. Fachinotti,Finite element modeling of welding processes, Applied Mathematical Modelling, 35(2), 688(2011)
5 L. Nastac,Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys, Acta Materialia, 47(17), 4253(1999)
6 Y. Minoru, N. Yukinobu, H. Hiroshi, O. Kenichi,Numerical simulation of solidification structure formation during continuous casting in Fe–0.7mass%C alloy using cellular automaton method, ISIJ International, 46(6), 903(2006)
7 J. J. Li, J. C. Wang, G. C. Yang,Phase-field simulation of microstructure development involving nucleation and crystallographic orientations in alloy solidification, Journal of Crystal Growth, 309(1), 65(2007)
8 S. Luo, M. Y. Zhu,A two-dimensional model for the quantitative simulation of the dendritic growth with cellular automaton method, Computational Materials Science, 71, 10(2013)
9 H. Yin, S. D. Fellcelli,Dendrite growth simulation during solidification in the LENS process, Acta Materialia, 58(4), 1455(2010)
10 HUANG Anguo,YU Shengfu, LI Zhiyuan, Simulation on weld metal solidifying microstructure with cellular automaton, Transactions of The China Welding Institution, 29(4), 45(2008)
10 黄安国, 余圣甫, 李 志, 焊缝金属凝固组织元胞自动机模拟, 焊接学报, 29(4), 45(2008)
11 ZHAN Xiaohong, DONG Zhibo, WEI Yanhong, WANG Yong, Simulation of columnar dendrite grain growth in weld pool of Ni-Cr binary alloy, The Chinese Journal of Nonferrous Metals, 19(8), 1432(2009)
11 占小红, 董志波, 魏艳红, Ni-Cr二元合金焊接熔池中柱状枝晶生长模拟, 中国有色金属学报, 19(8), 1432(2009)
12 ZHAO Yuzhen,ZHAO Haiyan, SHI Yaowu, Microstructure simulation in welding 1Crl8Ni9Ti steel, Transactions of The China Welding Institution, 29(12), 18(2008)
12 赵玉珍, 赵海燕, 史耀武, 1Cr18Ni9Ti不锈钢焊接熔池的组织模拟, 焊接学报, 29(12), 18(2008)
13 M. Rappaz, C. A. Gandin,Probabilistic modeling of microstructure formation in solidification processes, Acta Metall Mater, 41(2), 345(1993)
14 HU Hanqi, Fundamentals of solidification(Second Edition) (Beijing, Machinery Industry Press, 2007) p.40
14 胡汉起, 金属凝固原理(第2版) (北京, 机械工业出版社, 2007)p.40
15 C. Beckermann, H. J. Diepers, I. Steinbach, A. Karma, X. Tong,Modeling melt convection in phase-field simulations of solidification, Journal of Computational Physics, 154(2), 468(1999)
16 D. C. Tsai, W. S. Hwang,Numerical simulation of solidification morphologies of Cu-0.6Cr casting alloy using modified cellular automaton model, Transaction of Nonferrous Metals Society of China, 20(6), 1072(2010)
17 H. Hakan, R. Matti,Microstructure evolution influenced by dislocation density gradients modeled in a reaction-diffusion system, Computational Materials Science, 67, 373(2013)
18 CHEN Jin,Numerical simulation on solidification microstructures using cellular automaton methods, PhD thesis, Southeast University(2005)
18 (陈 晋, 基于原胞自动机方法的凝固过程围观组织数值模拟, 博士学位论文, 东南大学(2005))
19 Y. C. Liu, R. F. Sommer, E. J. Mittemeijer,The austenite-ferrite transformation of ultralow-carbon Fe-C alloy transition from diffusion-to interface-controlled growth, Acta Materialia, 54(12), 3383(2006)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!