Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (11): 858-864    DOI: 10.11901/1005.3093.2014.197
Current Issue | Archive | Adv Search |
High-Temperature Hydrogenation Behavior of Titanium Aluminum Carbide
Chen CHEN1,2,**,Haibin ZHANG1(),Shuming PENG1,Xinggui LONG1,Jianguo ZHU2
1. Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang 621900
2. College of Materials Science and Engineering, Sichuan University, Chengdu 610065
Cite this article: 

Chen CHEN,Haibin ZHANG,Shuming PENG,Xinggui LONG,Jianguo ZHU. High-Temperature Hydrogenation Behavior of Titanium Aluminum Carbide. Chinese Journal of Materials Research, 2014, 28(11): 858-864.

Download:  HTML  PDF(4530KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The thermal stability of Ti3AlC2, a kind of ternary laminated machinable ceramic, in hydrogen atmosphere at 1100-1400℃ was investigated. The phase composition and surface morphology of Ti3AlC2 before and after hydrogenation were characterized by means of XRD, SEM, SIMS, and Raman. The resulted gaseous products of the hydrogenation process were calculated by Factsage software. Results show that during hydrogenation a small amount of hydrogen dissolves in Ti3AlC2; Ti3AlC2 decomposes into metastable phase of Ti3AlxC2 by stripping Al atoms. Most of the stripped Al atoms react with the scarce oxygen in the atmosphere to form a homogeneous but not dense Al2O3 film, which even spalls off at 1400℃. A gaseous phase of AlH is predicted by the calculation with thermodynamic software. The preliminary results indicate that Ti3AlC2 has a good hydrogen resistance at temperatures below 1300℃.

Key words:  inorganic non-metallic materials      hydrogenation      high temperature      Ti3AlC2     
Received:  17 April 2014     
Fund: *Supported by National Natural Science Foundation of China No. 91326102, Science and Technology Development Foundation of China Academy of Engineering Physics No. 2012B0302035 & 2013A0301012.
About author:  **To whom correspondence should be addressed, Tel: (0816)2497408, E-mail:

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.197     OR     https://www.cjmr.org/EN/Y2014/V28/I11/858

Fig.1  XRD spectra of Ti3AlC2 specimens after treatment at 1100-1400℃ for 3 h in hydrogen(containing 10-6 % O2)
Fig.2  Raman spectra of bulk Ti3AlC2 after treatment at 1200-1400℃ in hydrogen(containing 10-6 % O2)
Fig.3  SIMS analysis of as-prepared Ti3AlC2 and Ti3AlC2 after hydrogenation in 1200℃
Fig.4  Surface morphologies of Ti3AlC2 specimens after treatment for 3 h in 1100~1400℃ hydrogen. (a) substrate, (b) 1100℃, (c) 1200℃, (d) 1300℃, (e) 1400℃
Fig.5  Surface morphologies of the Ti3AlC2 specimens after treatment for 3 h in hydrogen (containing 10-6 % O2) (a) 1100℃, (b) 1200℃, (c) 1300℃, (d) 1400℃, A zone in Fig.4, (e) 1400℃, B zone in Fig.4
Elements A B C D E F
O 50.98 - 54.16 48.65 - 47.23
Al 43.27 14.03 39.64 48.56 14.03 50.39
Ti 1.72 70.35 0.47 0.46 70.35 0.49
C 4.03 15.62 5.73 2.33 15.62 1.89
  
Fig.6  Line scanning analysis of elements in the grain boundary
Fig.7  Simulated result of gaseous reaction product of Ti3AlC2 and H2 at 700-1200℃
1 H. Nowotny,Struktuchemie einiger verbindungen der ubergangsmetalle mit den elementer C, Si, Ge, Sn, Prog. Solid State Chem., 2, 27(1970)
2 Y. C. Zhou, Z. M. Sun,Electronic structure and bonding properties in layered ternary carbide Ti3SiC2, J. Phys: Condens. Mat., 12, 457(2000)
3 Y. C. Zhou, Z. M. Sun,Electronic structure and bonding properties of layered machinable Ti2AlC and Ti2AlN ceramincs, Phys. Rev. B, 61, 12570(2000)
4 G. Hug,Electronic structures of and composition gaps in the ternary Ti2MC, Phys. Rev. B, 74, 184113(2006)
5 M. W. Barsoum,T El-Raghy, Synthesis and characterization of a remarkable ceramic: Ti3SiC2, J. Am. Ceram. Soc., 79, 1953(1996)
6 M. W. Barsoum, M. Ali, T. El-Raghy,Processing and characterization of Ti2AlC, Ti2AlN and Ti2AlC0.5N0.5, Metall. Mater., Trans. A, 31, 1857(2000)
7 Y. C. Zhou, Z. M. Sun,Micro-scale plastic deformation of polycrystalline Ti3SiC2 under room-temperature compression, J. Euro. Ceram. Soc., 21, 1007(2001)
8 Y. W. Bao, W. Wang, Y. C. Zhou,Investigation of the relationship between elastic modulus and hardness based on depth-sensing indentation measurements, Acta Mater., 52, 5297(2004)
9 A. Heinzel, G. Müller, A. Weisenburger,Compatibility of Ti3SiC2 with liquid Pb and PbBi containing oxygen, Journal of Nuclear Materials, 392, 255(2009)
10 J. C. Nappé, Ph. Grosseau, F. Audubert, B. Guilhot, M. Beauvy, M. Benabdesselam, I. Monnet,Damages induced by heavy ions in titanium silicon carbide: Effects of nuclear and electronic interactions at room temperature, Journal of Nuclear Materials, 385, 304(2009)
11 K. R. Whittle, M. G. Blackford, R. D. Aughterson, S. Moricca, G. R. Lumpkin, D. P. Riley, N. J. Zaluzec,Radiation tolerance of Mn+ 1AXn, phases, Ti3AlC2 and Ti3SiC2, Acta Mater., 58, 4362(2010)
12 C. X. Wang, T. F. Yang, S. Y. Kong, J. R. Xiao, J. M. Xue, Q. Wang, C. F. Hu, Q. Huang, Y. G. Wang,Effects of He irradiation on Ti3AlC2: Damage evolution and behavior of He bubbles, Journal of Nuclear Materials, 440, 606(2013)
13 X. D. Qu, Y. X. Wang, L. Q. Shi, W. Ding, M. Wang, Y. S. Zhu,Effect of hydrogen-doping on bonding properties of Ti3SiC2, Physica B, 406(23), 4460(2011)
14 WANG Xiaohui,The synthesis and performance of layered machinable ceramics Ti3AlC2, Ti2AlC, PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences,Shenyang(2005)
14 (王晓辉, 层状可加工陶瓷Ti3AlC2、Ti2AlC的合成与性能, 中国科学院金属研究所博士论文, 沈阳(2005))
15 H. B. Zhang, Volker Presser,Christoph Berthold, Klaus Georg Nickel, X. Wang, Mechanisms and kinetics of the hydrothermal oxidation of bulk titanium silicon carbide, Journal of American Ceramic Society, 93(4), 1148(2010)
16 J. Y. Wang, Y. C. Zhou, T. Liao,A first-principles investigation of the phase stability of Ti2AlC with Al vacancies, Scripta Materialia, 58, 227(2008)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[12] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
No Suggested Reading articles found!