Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (11): 828-834    DOI: 10.11901/1005.3093.2014.195
Current Issue | Archive | Adv Search |
Mechanical Properties and Strengthen-toughening Mechanism of 1470 MPa Grade Dual-phase Steel
Zhengzhi ZHAO1,2,**(),Tingting TONG1,2,ZHAOAiminsup1,2,Lan SU1,2,Yan ZHANG1,2
1. Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083
2. Beijing Laboratory of Modern Traffic Metal Materials and Processing Technology, Beijing 100083
Cite this article: 

Zhengzhi ZHAO,Tingting TONG,Lan SU,Yan ZHANG. Mechanical Properties and Strengthen-toughening Mechanism of 1470 MPa Grade Dual-phase Steel. Chinese Journal of Materials Research, 2014, 28(11): 828-834.

Download:  HTML  PDF(6011KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Plates of 1.5 mm in thickness of a model dual-phase steel 0.16C-1.38Si-3.2Mn was prepared by complex processes of rolling and annealing. The mechanical property and work hardening behavior of the steel after annealing were examined. The microstructure and fracture morphology of the steel were characterized by scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD) techniques with emphasis on the strengthen-toughening mechanism of grain refinement of the steel. The results show that the microstructure of the steel annealed at 800℃ consists of ferrite (8.8%) and tempered martensite (91.2%). The annealed steel exhibits good comprehensive performance: the yield strength of 873 MPa with characteristics of continuous yield, tensile strength of 1483 MPa, total elongation of 11% and yield ratio of 0.58. The factors such as the manganese content of the steel, the initial microstructure before annealing, the large deformation of cold rolling and the key parameters of annealing process are all conductive to the grain refining of the steel, as a result the size of ferrite phases is about 1-2 μm and the effective size of martensite bundles is 0.2-1.5 μm. The refined grains may play an important role in blocking the movement of dislocation and increase the resistance to crack propagation thereby enhance the strength, toughness and ductility of the steel sheet.

Key words:  metallic materials      ultra-high strength dual-phase steel      grain refinement      strengthen-toughening mechanism      work hardening behavior     
Received:  16 April 2014     
Fund: *Supported by National Natural Science Foundation of China No.51271035.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.195     OR     https://www.cjmr.org/EN/Y2014/V28/I11/828

Fig.1  Schematic diagram of preparing process applied to tested steel
Fig.2  SEM images of tested steel after annealing (a) low magnification (b) high magnification
Fig.3  TEM images of tested steel after annealing (a) well-tempered martensite, (b) less-tempered martensite, (c) ferrite
Fig.4  Stress-strain curves of tested steel after annealing
Fig.5  Tensile fracture morphologies of tested steel after annealing (a) macroscopic fracture (b) microscopic fracture
Fig.6  Instantaneous n-value and work hardening rate of tested steel after annealing
Fig.7  Work hardening behavior of tested steel by the modified C-J analysis
Fig.8  Grain distribution of tested steel after annealing
Fig.9  Statistics of effective grain size of martensite blocks of tested steel after annealing
Fig.10  SEM morphologies of tested steels (a) hot rolled (b) cold rolled
Fig.11  Kikuchi quality map of tested steel after annealing (a) before tension (b) after tension
1 D. K. Matlock, J. G. Speer,Processing opportunities for new advanced high-strength sheet steels, Materials and Manufacturing Processes, 25(1-3), 7(2010)
2 T. G. Langdon,Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement, Acta Materialia, 61(19), 7035(2013)
3 J. Hu, L. X. Du, H. Xie, P. Yu, R. D. K. Misra,A nanograined/ultrafine-grained low-carbon microalloyed steel processed by warm rolling, Materials Science and Engineering: A, 605, 186(2014)
4 H. Matsuda, R. Mizuno, Y. Funakawa, K. Seto, Y. Tanaka,Effects of auto-tempering behaviour of martensite on mechanical properties of ultra high strength steel sheets, Journal of Alloys and Compounds, 577(S1), 661(2013)
5 G. Rosenberg, I. Sinaiová, L. Juhar,Effect of microstructure on mechanical properties of dual phase steels in the presence of stress concentrators, Materials Science & Engineering A, 582, 347(2013)
6 LI Hongying,Fracture analysis of the metal tensile specimen, Journal of Shanxi Datong University (Natural Science), 27(1), 76(2011)
6 (李红英, 金属拉伸试样的断口分析, 山西大同大学学报: 自然科学版, 27(1), 76(2011))
7 M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe,Deformation and fracture mechanisms in fine-and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging, Acta Materialia, 59(2), 658(2011)
8 N. Saeidi, F. Ashrafizadeh, B. Niroumand,Development of a new ultrafine grained dual phase steel and examination of the effect of grain size on tensile deformation behavior, Materials Science & Engineering A, 599, 145(2014)
9 LI Yulan,Definition and mechanical characteristics of true stress-strain, Journal of Chongqing University (Natural Science Edition), 24(3), 58(2001)
9 (李玉兰, 真应力-应变的定义及其力学特征, 重庆大学学报: 自然科学版, 24(3), 58(2001))
10 V. Colla, M. D. Sanctis, A. Dimatteo, G. Lovicu, A. Solina, R. Valentini,Strain hardening behavior of dual-phase steels, Metallurgical and Materials Transactions A, 40(11), 2557(2009)
11 NIE Wenjin,SHANG Chengjia, GUAN Hailong, ZHANG Xiaobing, CHEN Shaohui, Control of microstructures of ferrite/bainite (F/B) dual-phase steels and analysis of their resistance to deformation behavior, Acta Metallurgica Sinica, 48(3), 298(2012)
11 (聂文金, 尚成嘉, 关海龙, 张晓兵, 陈少慧,铁素体/贝氏体(F/B)双相钢组织调控及其抗变形行为分析, 金属学报, 48(3), 298(2012))
12 WEI Xing,FU Limig, LIU Shicang, WANG Wei, SHAN Aidang, Deformation behavior of constituent phases and the affected factors in dual-phase steel, Chinese Journal of Materials Research, 27(6), 665(2013)
12 (魏 兴, 付立铭, 刘世昌, 王 巍, 单爱党, 双相钢组成相的变形行为及其影响因素, 材料研究学报, 27(6), 665(2013))
13 H. Seyedrezai, A. K. Pilkey, J. D. Boyd,Effect of pre-IC annealing treatments on the final microstructure and work hardening behavior of a dual-phase steel, Materials Science & Engineering A, 594, 178(2014)
14 HOU Xiaoying,XV Yunbo, WU Di, Microstructure and mechanical properties of 980 MPa grade hot rolled V-microalloyed TRIP steel, Chinese Journal of Materials Research, 25(2), 158(2011)
14 (侯晓英, 许云波, 吴 迪, 热轧钒微合金TRIP钢的微观组织和力学性能, 材料研究学报, 25(2), 158(2011))
15 LAN Huifang, W. J. Liu,LIU Xianghua, Ultrafine grained steels produced by tempering cold rolled martensite and their thermal stability, Chinese Journal of Materials Research, 22(3), 279(2008)
15 (蓝慧芳, W. J. Liu,刘相华, 马氏体冷轧-回火制备超细晶钢及其热稳定性, 材料研究学报, 22(3), 279(2008))
16 Y. Okitsu, N. Takata, N. Tsuji,A new route to fabricate ultrafine-grained structures in carbon steels without severe plastic deformation, Scripta Materialia, 60(2), 76(2009)
17 DAI. Qifeng,SONG Renbo, FAN Wuyan, GUO Zhifei, GUAN Xiaoxia, Behaviour and mechanism of strain hardening for dual phase steel DP 1180 under high strain rate deformation, Acta Metallurgica Sinica, 48(10), 1160(2012)
17 (代启锋, 宋仁伯, 范午言, 郭志飞, 关小霞, DP1180双相钢在高应变速率变形条件下应变硬化行为及机制, 金属学报, 48(10), 1160(2012))
18 ZHAIO Xianmeng,KANG Yonglin, HAN Qihang, Austenite isochronal transformation kinetics of 1000 MPa cold rolled dual phase steel, Journal of University of Science and Technology Beijing, 35(2), 195(2013)
18 (赵显蒙, 康永林, 韩启航, 1000 MPa级冷轧双相钢奥氏体的等时相变动力学, 北京科技大学学报, 35(2), 195(2013))
19 R. Ueji, N. Tsuji b, Y. Minamino, Y. Koizumi,Ultragrain refinement of plain low carbon steel by cold rolling and annealing of martensite, Acta Materialia, 50, 4177(2002)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!