Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (5): 346-352    DOI: 10.11901/1005.3093.2013.871
Current Issue | Archive | Adv Search |
Effect of Ultra Fast Cooling on Precipitation Behavior of Cementite in Carbon Steels and Its Strengthening Effect
Bin WANG,Zhenyu LIU(),Jie FENG,Xiaoguang ZHOU,Guodong WANG
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, 110819
Cite this article: 

Bin WANG,Zhenyu LIU,Jie FENG,Xiaoguang ZHOU,Guodong WANG. Effect of Ultra Fast Cooling on Precipitation Behavior of Cementite in Carbon Steels and Its Strengthening Effect. Chinese Journal of Materials Research, 2014, 28(5): 346-352.

Download:  HTML  PDF(6537KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of ultra fast cooling (UFC) during hot strip rolling on the precipitation behavior of cementite in carbon steels and its subsequent strengthening effect have been investigated by controlling the cooling temperatures for three carbon steels with 0.04%,0.17% and 0.5%C respectively. The results show that the refinement of ferrite grains and the reduction of pearlite lamellar spacing might mainly be responsible for the strengthening of the two steels containing 0.04%C and 0.5%C respectively, while no nano-scaled cementite precipitation formed. On the other hand, a large number of nano-scaled cementite precipitates with the size of 10~100 nm formed in the steel with 0.17%C. Therefore, the precipitation of the nanoscaled cementite precipitates could be realized by the UFC process for the plain carbon steel with 0.17%C but with no request for the addition of microalloying elements. Due to the precipitation strengthening of the nanoscaled cementite, the yield strength of the experimental steels with 0.17%C increased with the lowering the finish temperature of the UFC process gradually and typically reached an increment higher than 110MPa. A further thermo mechanical treatment (TMT) after UFC can increase evidently the dislocation density for cementite nucleation, and it will be a feasible way to realize the uniform precipitation of nano-scaled cementite entirely in the microstructure of the steel, thereby further enhancing the strengthening effect. After hot rolling with the UFC and TMT process, the yield strength of the 0.17%C steel may reach a level greater than 650 MPa, in other words, a net increment larger than 300 MPa may be ascribed to the precipitation strengthening effect of nano-scaled cementite.

Key words:  metallic materials      ultra fast cooling (UFC)      nano-scaled cementite      precipitation strengthening      thermomechanical treatment (TMT)     
Received:  19 November 2013     
Fund: *Supported by Chinese Postdoctoral Science Foundation No. 2014M551107 and Fundamental Research Funds for the Central Universities No. N130307001.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.871     OR     https://www.cjmr.org/EN/Y2014/V28/I5/346

Steel No. C Si Mn P S N Fe
I 0.04 0.19 0.70 0.009 0.002 0.0035 Bal.
II 0.17 0.18 0.70 0.008 0.002 0.0035 Bal.
III 0.50 0.20 0.69 0.010 0.005 0.0041 Bal.
Table 1  Chemical compositions of tested steels (mass fraction, %)
Fig.1  Micrographs illustrating cementite in 0.04%C steel after UFC process (a) OM, (b, c) TEM
Fig.2  Micrographs illustrating cementite in 0.17%C steel after UFC process (a) OM, (b, c) TEM
Fig.3  Micrographs illustrating cementite in 0.5%C steel after UFC process (a) OM, (b) SEM, (c) TEM
Fig.4  TEM images of degenerated pearlite in 0.17%C steel with the UFC stop temperature of (a) 730℃, (b) 672℃ and (c) 600℃
Fig.5  Effect of UFC stop temperature on the strength of 0.17%C steel
Fig.6  Percentage elongations after fracture of 0.17%C steel
Fig.7  Microstructure of 0.17%C steel after thermomechanical treatment. (a) SEM, (b) TEM
Fig.8  Effect of UFC stop temperature on mechanical properties of 0.17%C steel by TMT
Fig.9  TEM image of nanoscale cementites precipitation around the dislocation lines by TMT process
1 WANG Guodong,The new generation TMCP with the key technology of ultra fast cooling, Shanghai Metal, 30(2), 1(2008)
1 (王国栋, 以超快速冷却为核心的新一代TMCP技术, 上海金属, 30(2), 1(2008))
2 E. V. Pereloma, J. D. Boyd,Effects of simulated on line accelerated cooling processing on transformation temperatures and microstructure in microalloyed steels, Material Science and Technology, 12(12), 1043(1996)
3 J. Fu, G. Q. Li, X. P. Mao, K. M. Fang,Nanoscale cementite precipitates and comprehensive strengthening mechanism of steel, Metallurgical and Materials Transactions A, 42A: 3797(2011)
4 Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda,Development of high strength hot rolled sheet steel consisting of ferrite and nanometer-sized carbides, ISIJ International, 44(11), 1945(2004).
5 H. Kagechika. Production technology of iron steel in Japan during 2006, ISIJ International, 47(6), 773(2007)
6 The technical society, the iron and steel institute of Japan. Production and technology of iron and steel in Japan during 2007, ISIJ International, 48(6), 707(2008)
7 Y. V. Leeuwe, M. Onink, J. Sietsm,The grammar-alpha transformation kinetics of low carbon steel under ultra-fast cooling conditions, ISIJ International, 41(9), 1037(2001).
8 LIU Zongchang, REN Huiping, Diffusion Phase Transformation of Supercooled Austenite (Beijing, Science Press, 2007) p.52
8 (刘宗昌, 任慧平, 过冷奥氏体扩散型相变(北京: 科学出版社, 2007) p.52)
9 WANG Bin,LIU Zhenyu, ZHOU Xiaoguang, WANG Guodong, Calculation of transformation driving force for the precipitation of nano-scaled cementites in the hypoeutectoid steels through ultra fast cooling, Acta Metallurgica Sinica, 49(1), 26(2013)
9 (王 斌, 刘振宇, 周晓光, 王国栋, 超快速冷却条件下亚共析钢中纳米级渗碳体析出的相变驱动力计算, 金属学报, 49(1), 26(2013))
10 D. Rojas, J. Garcia, O. Prat, L. Agudo, C. Carrasco, G. Sauthoff, A.R. Kaysser- Pyzalla,Effect of processing parameters on the evolution of dislocation density and sub-grain size of a 12%Cr heat resistant steel during creep at 650℃, Materials Science and Engineering, 528A, 1372(2011)
11 R. L. Klueh, N. Hashimoto, P. J. Maziasz,Development of new nano-particle-strengthened martensitic steels, Scripta Materialia, 53, 275(2005)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!