Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (6): 407-412    DOI: 10.11901/1005.3093.2013.848
Current Issue | Archive | Adv Search |
Microstructural Evolution of a Third-Generation Single Crystal Superalloy DD33 During Solution Treatment
Xingang LIU1,**(),Qiang LEI2,Li WANG1,Xiangwei LI1,Bao QIAN3,Langhong LOU1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. Guizhou Liyang Aviation Power Co., Ltd., Guizhou 561102
3. Jinzhou Hangxing Vacuum Equipment Co., Ltd., Jinzhou 121001
Cite this article: 

Xingang LIU,Qiang LEI,Li WANG,Xiangwei LI,Bao QIAN,Langhong LOU. Microstructural Evolution of a Third-Generation Single Crystal Superalloy DD33 During Solution Treatment. Chinese Journal of Materials Research, 2014, 28(6): 407-412.

Download:  HTML  PDF(10715KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructural evolution of a third-generation single crystal superalloy DD33 during solution treatment has been investigated by optical microscope (OM), Scanning electron microscope (SEM) and electron probe microanalysis (EPMA). The results show that the γ' particles in interdendritic regions of the alloy grew up obviously during isothermal exposure at 1310℃, and fully dissolved after heat treated at 1310℃/2 h. No significant dissolution of (g +γ') eutectic could be observed when solution treated at temperatures below 1320℃. The cursive -script like MC carbides dissolved gradually and then transform into granular MC particles during solution treatment, which promoted the coarsening of γ' precipitates in the interdendritic regions. The segregation of elements Al, Ta, Cr and Co in the eutectic γ' was enhanced with the increasing temperature, which may be induced by up-hill diffusion.

Key words:  metallic materials      single crystal superalloy      solution treatment      microstructure      eutectic     
Received:  12 November 2013     
Fund: *Supported by National Basic Research Program (973 Program) of China No. 2010CB631201, National High Technology Research and Development Program (863 Program) of China Nos. 2012AA03A511 & 2012AA03A513, and National Natural Science Foundation of China No. 51201164.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.848     OR     https://www.cjmr.org/EN/Y2014/V28/I6/407

Fig.1  Solution treatment procedure of the experimental alloy
Fig.2  As-cast microstructure of the experimental alloy: (a) dendrite microstructure, (b) γ+γ' eutectic, (c) γ' phase in the dendrite core, (d) γ' phase in the interdendritic region, (e) MC carbides, (f) EDS spectrum of MC carbides
Fig.3  Microstructures of the experimental alloy at various stages of solution treatment: (a) and (c) 1240℃/2 h, (b) and (d) 1260℃/2 h
Fig.4  Microstructures of the experimental alloy at various stages of solution treatment: (a) 1280℃/2 h, (b) 1300℃/2 h, (c) 1310℃/2 h, (d) 1320℃/2 h, (e) 1330℃/2 h, (f) 1340℃/2 h
Fig.5  Morphology of MC carbides at various stages of solution treatment: (a) As-cast, (b) 1260℃/2 h, (c) 1280℃/2 h, (d) 1310℃/2 h
Fig.6  Volume fraction of MC carbides at different temperatures during solution treatment
Fig.7  Concentration curves of alloying elements in eutectic γ' at different temperatures during solution treatment
1 R. M. Kearsey, J. C. Beddoes, P. Jones, P. Au,Compositional design considerations for microsegregation in single crystal superalloy systems, Intermetallics, 12, 903(2004)
2 A. Heckl, R. Rettig, R. F. Singer,Solidification characteristics and segregation behavior of nickel-base superalloys in dependence on different rhenium and ruthenium contents, Metallurgical and Materials Transactions A, 41, 202(2010)
3 R. C. Reed, Superalloys: fundamentals and applications (Cambridge, Cambridge University Press, 2006)p.63
4 G. E. Fuchs,Solution heat treatment response of a third generation single crystal Ni-base superalloy, Materials Science and Engineering A, 300, 52(2001)
5 B. C. Wilson, J. A. Hickman, G. E. Fuchs,The effect of solution heat treatment on a single-crystal Ni-base superalloy, Journal of Metals, 55, 35(2003)
6 S. R. Hegde, R. M. Kearsey, J. C. Beddose,Design homogenization-solution heat treatments for single crystal superalloys, Materials Science and Engineering A, 527, 5228(2010)
7 M. S. A. Karunaratne, D. C. Cox, P. Carter, R. C. Reed, Modelling of the microsegregation in CMSX-4 superalloy and its homogenization during heat treatment, in: Superalloys 2000, edited by T. M. Pollock, R. D. Kissinger, R. R. Bowman, K. A. Green, M. McLean, S. L.Olson, J. J. Schirra,(New York, TMS, 2000)p.263
8 W. Kurz, D. J. Fisher, Fundamentals of solidification (Switzerland, Trans. Tech. Publications Ltd., 1998)p.94
9 A. D. Cetel, D. N. Duhl,Second-generation nickel-base single crystal superalloy, in: Superalloys 1988, edited by S. Reichman, D.N. Duhl, G. Maurer, S. Antolovich, C. Lund, (Warrendale, TMS, 1988)p.235
10 A. J. Wasson, G. E. Fuchs,Microstructural evolution of a carbon modified single crystal Ni-base superalloy, Material Characterization, 74, 11(2012)
11 A. F. Giamei, J. G. Tschinkel,Liquid metal cooling: A new solidification technique, Metallurgical Transactions A, 7, 1427(1976)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!