Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (2): 121-125    DOI: 10.11901/1005.3093.2013.713
Current Issue | Archive | Adv Search |
Surface Modification of Sisal Fiber Cellulose Microcrystallites by a Renewable Flame-Retardant CH/PA Coating
Sihua ZENG,Chun WEI(),Yuyuan TAN,Wu WANG,Jun FU,Hongxia LIU,Aimiao QIN
College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004
Cite this article: 

Sihua ZENG,Chun WEI,Yuyuan TAN,Wu WANG,Jun FU,Hongxia LIU,Aimiao QIN. Surface Modification of Sisal Fiber Cellulose Microcrystallites by a Renewable Flame-Retardant CH/PA Coating. Chinese Journal of Materials Research, 2014, 28(2): 121-125.

Download:  HTML  PDF(3079KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Sisal fiber cellulose microcrystallines (SFCM) was coated with a fully renewable flame-retardant coatings consisted of cationic chitosan (CH) and anionic phytic acid (PA) via layer-by-layer (LbL) assembly. The structure and properties of the formed microcrystallite composite were characterized by Zeta potential, TGA, FESEM, VFT, and MCC methods. Zeta potential and FESEM results show that the surface charge of the coated cellulose microcrystallites reversed due to the adsorption of polyelectrolyte during multilayer deposition process. TG analysis show that the initial decomposition temperature of the composites decreased from 299℃ to 257℃ and the residues increased from 5.41% up to 37.34% with the increase of CH/PA film layers. Examination of SFCM(CH/PA)5 residues by FESEM revealed that the distinct fiber structure have been preserved and insignificant fiber shrinkage was observed.Vertical combustion testing (VFT)results show that for SFCM(CH/PA)5 , in comparison with the plain SFCM, the afterflame time is drops from 150 s down to 39 s; the pkHRR and total heat release (HR)exhibit great reduction of 70.6% and 79.2% respectively. These results demonstrate that the CH/PA coating has obviously improved the flame retardant performance of SFCM.

Key words:  composite      LbL self-assembly      SFCM (CH/PA)n      thermal performance      flame-retardant     
Received:  27 September 2013     
Fund: *Supported by National Natural Science Foundation of China Nos. 21264005, 21204013, 51263005 & 51163003 Natural Science Foundation of Guangxi No. 2013GXNSFDA019008.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.713     OR     https://www.cjmr.org/EN/Y2014/V28/I2/121

Fig.1  Changes of Zeta potential at alternatel adsorption steps of CH and PA
Fig.2  SEM images of pristine SFCM (a) and SFCM(CH/PA)5 (b)
Fig.3  Mass loss as a function of temperature for SFCM coated with different bilayers of CH/PA
Fig.4  SEM images of pristine SFCM (a, c)and SFCM(CH/PA)5 (b, d) after being charred in N2 at 700℃
Fig. 5  Images of vertical flame tests for pristine SFCM (a: 35 s after removing the burner, b: afterflame, c: char residues), SFCM(CH/PA)5 (d: 35 s after removing the burner, e: afterflame, f: char residues), respectively
1 LIU Peng,study on flame retardant functional cellulose materials, Master's degree paper, Taiyuan university of technology(2010)
1 (刘 鹏, 阻燃纤维素功能材料的研究, 硕士学位论文, 太原理工大学(2010)
2 Z. Y. Yang, X. W. Wang, D. P. Lei, B. Fei, J. H. Xin,A durable flame retardant for cellulosic fabrics, Polymer Degradation and Stability, 97, 2467(2012)
3 K. L. Xie, A. Q. Gao, Y. S. Zhang,Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen, Carbohydrate Polymers, 98, 706(2013)
4 Galina Laufer,Christopher Kirkland, Alexander B. Morgan, Jaime C. Grunlan, Intumescent multilayer nanocoating made with renewable polyelectrolytes for flame-retardant cotton, Biomacromolecules, 13, 2843(2012)
5 H. Wang, Y. M. Zhou, J. M. Ma, Y. Y. Zhou, H. Jiang,The effects of phytic acid on the maillard reaction and the formation of acrylamide, Food Chemistry, 141, 18(2013)
6 Y. Q. Chen, G. J. Wan, J. Wang, S. Zhao, Y. C. Zhao, N. Huang,Covalent immobilization of phytic acid on Mg by alkaline pre-treatment: Corrosion and degradation behavior in phosphate buffered saline, Corrosion Science, 75, 280(2013)
7 WU peng,TIAN jichun, WANG fengcheng, Present situation and aplication of phytic acid in cereal, Journal of the Chinese Cereals and Oils Association, 24(3), 137(2009)
7 (吴 澎, 田纪春, 王凤成, 谷物中植酸及其应用的研究进展, 中国粮油学报, 24(3), 137(2009)
8 Y. J. Wang, Alexandra S. Angelatos,Frank Carusol, Template synthesis of nanostructured materials via layer-by-layer assembly, Chem. Mater, 20, 848(2008)
9 Federico Carosio,Alessandro Di Blasio, Jenny Alongi, Giulio Malucelli, Green DNA-based flame retardant coatings assembled through layer by layer , Polymer, 54, 5148(2013)
10 S. Y. Liang, N. Matthias Neisius,Sabyasachi Gaan, Recent developments in flame retardant polymeric coatings, Progress in Organic Coatings, 76, 1642(2013)
11 Juan I. Moran, Vera A. Alvarez, Viviana P.Cyras,Analia Vazquez, Extraction of cellulose and preparation of nanocellulose from sisal fibers, Cellulose, 15, 149(2008)
12 A. R. Horrocks, B. K. Kandola, P. J. Davies, S. Zhang, S. A. Padbury,Developments in flame retardant textiles- a review, Polymer Degradation and Stability, 88, 3(2005)
13 DENG Yi,LIU Xiuhua, GAO Shangfei, Containing flame retardants for textile, Journal of Cellulose Science and Technology, 12(4), 57(2004)
13 (邓 义, 刘秀华, 高尚飞, 含磷阻燃剂在天然纤维织物阻燃中的应用, 纤维素科学与技术, 12(4), 57(2004))
14 H. Wouter, Salt of a melamin condensat ion product and a phosphorous-containing acid : US, 20030096946(2003)
15 T. Zhang, H. Q. Yan, M. Peng, L. L. Wang, H. L. Din, Z. P. Fang. Construction of flame retardant nanocoating on ramiefabric via layer-by-layer assembly of carbon nanotubeammonium polyphosphate, Nanoscale, 5, 3013(2013)
16 Y. C. Li,Sarah Mannen, Alexander B. Morgan, S. C. Chang, Y. H. Yang, Brian Condon, Jaime C. Grunlan, Intumescent all-polymer multilayer manocoating capable of extinguishing flame on fabric, Adv. Mater., 23, 3926(2011)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!