Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (6): 582-586    
  研究论文 本期目录 | 过刊浏览 |
SiC颗粒的高温氧化动力学
李玉海1;  黄晓莹1;  王承志1;  李颖2
1.沈阳理工大学材料科学与工程学院 沈阳 110168
2.沈阳仪表科学研究院 沈阳 110043
High temperature oxidation kinetics of SiC particles
LI Yuhai1; HUANG Xiaoying1;  WANG Chengzhi1;  LI Ying2
1.School of Materials Science and Engineering; Shenyang Ligong University; Shengyang 110168
2.Shenyang Institute of Science and Technology Instrument; Shenyang 110043
引用本文:

李玉海 黄晓莹 王承志 李颖. SiC颗粒的高温氧化动力学[J]. 材料研究学报, 2009, 23(6): 582-586.
. High temperature oxidation kinetics of SiC particles[J]. Chin J Mater Res, 2009, 23(6): 582-586.

全文: PDF(719 KB)  
摘要: 

研究了SiC颗粒在927oC、1027oC和1127oC空气中的高温氧化动力学. 结果表明, 温度越高SiC颗粒的氧化速率常数越大, 氧化反应越容易进行;
SiC颗粒的高温氧化分为氧化前期和氧化后期两个阶段. 氧化前期的反应速率受界面化学反应的控制; 氧化后期受扩散控制, 其表观活化能远比氧化前期的大. SiC颗粒的高温氧化过程符合两个阶段式模型: 氧化前期的氧化速率常数kc=143.37exp(-70994}/(RT))(mg m-2 min-1), 氧化后期的氧化速率常数kD=3.61108exp((-192758)(RT))(mgm-2 min-1).

关键词 材料科学基础学科 SiC颗粒 高温氧化动力学 氧化速率    
Abstract

The oxidation kinetics of SiC particle in air at the temperature 927oC, 1027oC, 1127oC was investigated by continuous weighing method in high temperature oxidation furnace. The results show that the oxidation rate constant increases with the rising temperature. Oxidation process of SiC particle can be divided into the earlier and the later period. Oxidation rate was controlled by surface chemical reaction in the earlier period and by diffusion in later period. Apparent activation energy in the later period is much bigger than that in the earlier period. The oxidation process conforms to two-stage model. In the earlier period kc=143.37exp((−70994)/(RT) ) (mg·m−2·min−1), In the later period kD=3.61×108exp(−192758 RT )(mg·m−2·min−1)

Key wordsfoundational discipline in materials science    SiC particle    high temperature oxidation kinetics    oxidation rate
收稿日期: 2009-03-31     
ZTFLH: 

TB321

 
1 WANG Xiaohong, FENG Peizhong, QIANG Yinghuai, Researeh and Development of Fabrieation & Applications for Sicp Particle-reinforced Aluminum Matrix Composites, Light Alloy Fabrication Technology, 30(12), 9(2002) (王晓虹, 冯培忠, 强颖怀, SiCp增强铝基复合材料的制备与应用的研究进展, 轻合金加工技术,   30(12), 9(2002)) 2 ZGOU Zhengjun, LIU Junwu, Preparation of SiCp-Ni Compound Particle by Electroless Particle Surface Technology, 31(05), 19(2002) (邹正军, 刘君武, 化学镀法制备SiCp-Ni复合粉体, 表面技术,  31(05), 19-21(2002)) 3 WANG Hailong, Study on the SiC(Cu)/Al Ceramicmetal Composites, Masters Thesis, Zgebgzhou University(2004) (王海龙, SiC(Cu) /Al金属陶瓷复合材料的研究, 硕士学位论文, 郑州大学(2004)) 4 LIU Junyou, LIU Yingcai, LIU Guocai, Oxidation behavior of silicon carbide particales and their interfacial characterization in aluminum matrix composites, The Chinese Journal of Nonferrous Metals, 12(05), 961(2002) (刘俊友, 刘英才, 刘国权, SiC颗粒氧化行为及SiCp/铝基复合材料界面特征, 中国有色金属学报,  12(05), 961(2002)) 5 K.Mergia, D.Lafatzis, N.Moutis, Oxidation behaviour of SiC coatings, Applied Physics, 92, 387(2008) 6 Laurie A. Pierce, Diane M. Mieskowski, William A. Sanders, Effect of grain-boundary crystallization on the high-temperature strength of silicon nitride, Materials science, 21, 1348(1986) 7 GAO Ying, Oxidation Behavior of Sialon/Si3N4–SiC in Middle-high Temperature, Master's Thesis,  XI'An University Of Architecture and Technology(2007) (高瑛, Sialon/Si3N4--SiC系材料中高温氧化行为的研究, 硕士学位论文, 西安建筑科技大学(2007)) 8 D.Sciti, F.Winterhalter, A.Bellosi, Oxidation behaviour of a pressureless sintered AIN-SiC composite, Materials science, 39, 6965(2004) 9 MO Dingcheng, Metallurgical Kinetics (Changsha, The Press of Central South University of Technology, 1987) p.173 (莫鼎成,  冶金动力学  (长沙, 中南工业大学出版社, 1987) p.173) 10 W.M.N.Nour, S.H.Kenawy, Oxidation behaviour of SiCplatelets and particulates-reinforced Al2O3/ZrO2 matrix composites, Materials science, 38, 1673(2003) 11 Gerhard H. Schiroky, In situ measurement of silicon oxidation kinetics by monitoring spectrally emitted radiation, Materials science, 22, 3595(1987) 12 Y.J.vander Meulen, J.G.Cahill, Effeces of HCl and Cl2 additions on silicon oxidation kinetics, Electronic Materials, 3, 372(1974) 13 ZHANG Wei, University Chemistry, 1, (Beijing, Chemical Industry Press, 2008) p.125 (张炜, 大学化学  (北京, 化学工业出版社, 2008) p.125) 14 WANG Haitang, SHI Qingliang, University Chemistry, 1, (Beijing, Chemical Industry Press, 2002) p.24 (王海棠, 时清亮,  大学化学, 1, (西安, 西北工业大学出版社, 2002) p.24)
[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[4] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[5] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[6] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[7] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[8] 刘庆生, 曾少军, 张丹城. 基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证[J]. 材料研究学报, 2017, 31(9): 703-713.
[9] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[10] 黄莉. 石蜡/水相变乳液的稳定性能和储能容量[J]. 材料研究学报, 2017, 31(10): 789-795.
[11] 朱良,王晶,李晓慧,锁红波,张亦良. 基于堆焊成形钛合金高周疲劳实验数据的R-S-N模型[J]. 材料研究学报, 2015, 29(9): 714-720.
[12] 陈杨,钱程,宋志棠,闵国全. 用AFM力曲线技术测定聚合物微球的压缩杨氏模量*[J]. 材料研究学报, 2014, 28(7): 509-514.
[13] 于桂琴,刘建军,梁永民. 胍盐离子液体的合成及其对钢/钢摩擦副的摩擦性能研究*[J]. 材料研究学报, 2014, 28(6): 448-454.
[14] 王效岗,李乐毅,王海澜,周存龙,黄庆学. 双金属复合板材辊式矫直的数值模型*[J]. 材料研究学报, 2014, 28(4): 308-313.
[15] 姚武,吴梦雪,魏永起. 三元复合胶凝体系中硅灰和粉煤灰反应程度的确定*[J]. 材料研究学报, 2014, 28(3): 197-203.