Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (1): 32-38    
  研究论文 本期目录 | 过刊浏览 |
电解多孔铁镍薄板结构的吸声性能
俞悟周; 蔺磊; 王佐民
同济大学声学研究所 上海 200092
Acoustic absorption of porous electrolytic iron–nickel panel with cavity
YU Wuzhou; LIN Lei; WANG Zuomin
Institute of Acoustics; Tongji University; Shanghai 200092
引用本文:

俞悟周 蔺磊 王佐民. 电解多孔铁镍薄板结构的吸声性能[J]. 材料研究学报, 2009, 23(1): 32-38.
, . Acoustic absorption of porous electrolytic iron–nickel panel with cavity[J]. Chin J Mater Res, 2009, 23(1): 32-38.

全文: PDF(1013 KB)  
摘要: 

对具有不同参数的单层电解多孔铁镍薄板结构及双层复合结构的吸声特性进行了试验和分析. 将电解多孔铁镍薄板理想化为超细微孔结构, 采用平均孔距和平均孔径利用微穿孔理论计算了电解多孔铁镍薄板结构的吸声性能, 并与实测值进行了比较. 结果表明, 单层空腔电解多孔铁镍薄板结构具有很强的共振吸声特性和良好的吸声性能, 吸声系数大于0.6的频带超过2个倍频程. 双层复合结构可明显拓宽吸声频带, 进一步提高吸声性能. 对于单层电解多孔铁镍薄板结构, 采用平均孔径和平均孔距根据微穿孔理论获得的吸声系数计算值与实测值吻合得良好; 对于双层复合结构, 吸声系数计算值与实测值的频率特性相近, 最大值接近, 但存在一定的频率偏移.

关键词 材料科学基础学科吸声多孔金属微穿孔吸声材料    
Abstract

Acoustic absorption of single–layer porous electrolytic iron–nickel panels with different parameters was measured and analyzed, as well as double–layer porous electrolytic iron–nickel panels. Porous electrolytic iron–nickel panel was idealized as micro–perforated panel with ultra–minute perforation to calculate sound absorption applying statistical average hole diameter and hole space by Maah‘s theory. Porous electrolytic iron–nickel panel with back cavity exhibited resonant absorption character and performed good sound absorption. For single–layer porous electrolytic iron–nickel panel with cavity, calculations by Maah's theory were in concord with measurement results. For double–layer structure, calculation presented frequency character of absorption and maximum absorption coefficient similar to measurements, but there existed frequency shift of maximum absorption between calculation and measurement results.

Key wordsfoundational discipline in materials science    sound absorption    metallic foam    micro--perforation    absorptive material
收稿日期: 2008-05-07     
ZTFLH: 

O429

 
1 Les Stanwood, Health effect of fibrous glass, Construction Specifier, 41(3), 88(1988) 2 Laurel M. Sheppard, Engineering control of vitreous fibers, American Ceramic Society Bulletin, 68(12), 2092(1989) 3 LIU Jianye, The health hazardous effect of non–asbestos fiber, Journal of Occupational Health and Damage, 9(2), 112(1994) (刘建业, 非石棉纤维的健康危害, 职业卫生与病伤,  9(2), 112(1994)) 4 LIU Tiemin, WANG Yinsheng, Present status of manufacture, application, hazardous effects and preventive measures of asbestos substitutes in China, China Safety Science Journal, 12(2), 1(2002) (刘铁民, 王银生, 我国石棉替代品生产、使用、危害及防护措施状况, 中国安全科学学报, 12(2), 1(2002)) 5 T.J.Lu, Audrey Hess, M.F.Ashby, Sound absorption in metallic foams, Journal of Applied Physics, 85(11), 7528(1999) 6 T.J Lu, Feng Chen, Sound absorption of cellular metals with semiopen cells, Journal of the Acoustical Society of America, 108(4), 1697(2000) 7 ZhenKai Xie, Teruyuki Ikeda, Yosiyuki Okuda, Hideo Nakajima, Sound absorption characteristics of lotus–type porous copper fabricated by unidirectional solidification, Materials Science and Engineering A., 386, 390(2004) 8 Fusheng Han, G. Seiffert, Yuyuan Zhao, Acoustic absorption behavior of an open–celled aluminum foam, Journal of Physics D (Applied Physics), 36(3), 294(2003) 9 Masataka Hakamada, Tetsunume Kuromura, Youqing Chen, Hiromu Kusuda, Mamoru Mabuchi, High sound absorption of porous aluminum fabricated by spacer method, Applied Physics Letters, 88, 254106(2006) 10 Yu Haijun, Li Bing, Yao Guangchun, Wang Xiaolin, Luo Hongjie, Lui Yihan, Sound absorption and insulation property of closed–cell aluminum foam, Transactions of the Nonferrous Metals Society of China, 16(3), 1383(2006) 11 YU Haijun, YAO Guangchun, WANG Xiaolin, LI Bing, YIN Yao, Research on sound absorption property of Al–Si closed–cell aluminum foam, Journal of Functional Materials, 37(12), 2014(2006) (尉海军, 姚广春, 王晓林, 李兵, 尹 铫, 铝硅闭孔泡沫铝吸声性能研究, 功能材料, 37(12), 2014(2006)) 12 ZHAO Tingliang, XU Liantang, LI Daoyun, Acoustic absorption properties of aluminum foam, Chinese Internal Combustion Engine Engineering, 16(2), 55(1995) (赵庭良, 徐连棠, 李道韫, 泡沫铝的吸声特性, 内燃机工程, 16(2), 55(1995)) 13 J.Y.Chung, D.A.Blaser, Transfer function method of measuring in–duct acoustic properties. I. Theory, J. Acoust. Soc. Am., 68(3), 907(1980) 14 J.Y.Chung, D.A.Blaser, Transfer function method of measuring in–duct acoustic properties. II. Experiment, Journal of the Acoustical Society of America, 68(3), 914(1980) 15 W.T.Chu, Further experimental studies on the transfer– function technique for impedance tube measurements, Journal of the Acoustical Society of America, 83(6), 2255(1988) 16 LU Yuheng, Manual of Equipments and Materials of Noise and Vibration Control (Beijing, China Machine Press, 1999) p.143 (吕玉恒,  噪声与振动控制设备及材料选用手册 (北京, 机械工业出版社, 1999) p.143) 17 I.B.Crandall, Theory of Uibrating Systems and Sound (New York, Van Norstrand Company, 1927) p.229 18 Maa Dahyou, Theory and Design of Microperforated– panel Absorbers, Science in China, 23(1), 38(1975) (马大猷, 微穿孔板吸声结构的理论和设计, 中国科学,  23(1), 38(1975)) 19 Maa Dahyou, Fundamental Theory of Modern Acoustics, (Beijing, Science Press, 2004) p.217 (马大猷,  现代声学理论基础, (北京, 科学出版社, 2004) p.217)
[1] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[2] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[3] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[4] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[6] 徐稳, 王知杰, 朱雯雯, 彭子童, 姚楚, 游峰, 江学良. 微穿孔板-聚合物层状结构材料的制备和吸声性能[J]. 材料研究学报, 2021, 35(7): 535-542.
[7] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[8] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[9] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[10] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[11] 刘庆生, 曾少军, 张丹城. 基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证[J]. 材料研究学报, 2017, 31(9): 703-713.
[12] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[13] 黄莉. 石蜡/水相变乳液的稳定性能和储能容量[J]. 材料研究学报, 2017, 31(10): 789-795.
[14] 朱良,王晶,李晓慧,锁红波,张亦良. 基于堆焊成形钛合金高周疲劳实验数据的R-S-N模型[J]. 材料研究学报, 2015, 29(9): 714-720.
[15] 刘培生,顷淮斌. 一种具有球形孔隙的高孔率泡沫钛合金*[J]. 材料研究学报, 2015, 29(5): 346-352.