Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (12): 945-951    DOI: 10.11901/1005.3093.2025.023
  研究论文 本期目录 | 过刊浏览 |
奥氏体耐热钢Sanicro25的高温压痕蠕变行为
张浩杰, 林通, 赵杰(), 曹铁山(), 程从前
大连理工大学材料科学与工程学院 大连 116024
High-temperature Indentation Creep Behavior of an Austenitic Heat-resistant Steel Sanicro25
ZHANG Haojie, LIN Tong, ZHAO Jie(), CAO Tieshan(), CHENG Congqian
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

张浩杰, 林通, 赵杰, 曹铁山, 程从前. 奥氏体耐热钢Sanicro25的高温压痕蠕变行为[J]. 材料研究学报, 2025, 39(12): 945-951.
Haojie ZHANG, Tong LIN, Jie ZHAO, Tieshan CAO, Congqian CHENG. High-temperature Indentation Creep Behavior of an Austenitic Heat-resistant Steel Sanicro25[J]. Chinese Journal of Materials Research, 2025, 39(12): 945-951.

全文: PDF(5640 KB)   HTML
摘要: 

在温度为973~1073 K、应力为273~765 MPa的条件下进行Sanicro25奥氏体耐热钢的压痕蠕变实验,平端圆柱压头的直径为1 mm。结果表明:随着实验温度的提高和应力的增大稳态蠕变速率呈显著提高的趋势。根据稳态幂律关系计算出平均应力指数为3.6、激活能为257~295 kJ/mol。这些结果,与单轴拉伸实验结果高度一致,表明压痕蠕变实验能可靠表征合金的蠕变行为。试样表面的典型塑性堆积特征,源于压头下方的完全塑性区中轴向材料的流动;微观组织分析表明,压痕下方形成三个特征变形区,其中一个过渡区中的晶粒发生了显著择优取向变形,验证了位错攀移主导的蠕变机制。

关键词 金属材料压痕蠕变变形机制Sanicro25钢    
Abstract

Herewith, the indentation creep of Sanicro25 steel was assessed via an indentation creep test set with a flat-ended cylindrical indenter of 1 mm in diameter in temperature range of 973-1073 K, and stress range of 273-765 MPa. The results show that: with the increase of temperature and stress, the steady state creep rate is increasing; according to the steady state power relationship, the average stress index is deduced to be 3.6, and the activation energy 257-295 kJ/mol, which are in good agreement with those acquired from the uniaxial tensile test. It follows that the indentation creep test can reliably characterize the creep behavior of alloys. The surface of the tested steel presents typical characteristics of plastic deformation accumulation, which may be ascribed to the material flow that occurs beneath the pressure indenter in the fully plastic region along the axial direction; There existed three characteristic deformation zones beneath the indenter, in one of the three zones, the grains exhibit significant preferential orientation deformation, which verified the creep mechanism dominated by dislocation migration.

Key wordsmetallic materials    indentation creep    deformation mechanism    Sanicro25 steel
收稿日期: 2025-01-02     
ZTFLH:  TG142.73  
基金资助:船用燃气轮机基础研究项目(MGT2023001)
通讯作者: 赵杰,教授,jiezhao@dlut.edu.cn,研究方向为金属材料蠕变、组织演化、损伤及寿命预测;
曹铁山,副教授,tieshan@dlut.edu.cn,研究方向为金属材料高温形变、相变
Corresponding author: ZHAO Jie, Tel: 18940935099, E-mail: jiezhao@dlut.edu.cn;
CAO Tieshan, Tel: 13354054601, E-mail: tieshan@dlut.edu.cn
作者简介: 张浩杰,男,1999年生,硕士
图1  Sanicro25钢的原始金相组织和压痕蠕变示意图
MaterialTemperature, T/KApplied stress,σ/MPa

973

510

638

765

998

383

510

638

765

Sanicro25 steel

1023

383

510

638

765

1073

273

510

638

765

表1  实验条件与参数
图2  Sanicro25钢的压痕蠕变曲线
图3  Sanicro25钢在1073 K的压痕蠕变曲线
图4  Sanicro25钢的稳态蠕变速率与温度和应力的关系
图5  拉伸蠕变与转换后压痕蠕变速率-应力图
图6  在温度为1073 K和压力为765 MPa条件下压痕的纵向激光共聚焦图与实测深度和计算机记录深度的对比
图7  Sanicro25钢在温度为1073 K和压力为765 MPa的条件下蠕变后的金相显微组织
[1] Zhu Z L, Jiang D F, Cao Q, et al. Oxidation behavior of austenitic steel Sanicro25 and TP347HFG in supercritical water [J]. Mater. Corros., 2019, 70: 1087
[2] Yu H Y, Chi C Y. Precipitation behavior of Cu-rich phase in 18Cr9-Ni3CuNbN austenitic heat-resistant steel at early aging stage [J]. Chin. J. Mater. Res., 2015, 29: 195
[2] 于鸿垚, 迟成宇. 18Cr9Ni3CuNbN奥氏体耐热钢中富Cu相的早期析出行为 [J]. 材料研究学报, 2015, 29: 195
doi: 10.11901/1005.3093.2014.610
[3] Qiao J X, Shen J J, Wang X Y. Effect of cold deformation on Microstructure and properties of Sanicro25 austenitic heat-resistant steel [J]. Mater. Mech. Eng., 2022, 46(10): 92
[3] 乔吉新, 申俊杰, 王新宇. 冷变形对Sanicro25奥氏体耐热钢组织和性能的影响 [J]. 机械工程材料, 2022, 46(10): 92
doi: 10.11973/jxgccl202210016
[4] Dorner D, Röller K, Skrotzki B, et al. Creep of a TiAl alloy: a comparison of indentation and tensile testing [J]. Mater. Sci. Eng., 2003, 357A: 346
[5] Zhang Y, Jing H Y, Xu L Y, et al. High-temperature deformation and fracture mechanisms of an advanced heat resistant Fe-Cr-Ni alloy [J]. Mater. Sci. Eng., 2017, 686A: 102
[6] Lv D C, Cao T S, Cheng C Q, et al. Creep behavior and fracture characteristic of austenitic heat-resistant steel Sanicro25 [J]. Chin. J. Mater. Res., 2023, 37: 846
doi: 10.11901/1005.3093.2022.589
[6] 吕德超, 曹铁山, 程从前 等. 奥氏体耐热钢Sanicro25蠕变行为和断裂特征 [J]. 材料研究学报, 2023, 37: 846
doi: 10.11901/1005.3093.2022.589
[7] Dymáček P, Dobeš F, Kloc L. Small punch testing of Sanicro25 steel and its correlation with uniaxial tests [J]. Key Eng. Mater., 2017, 734: 70
doi: 10.4028/www.scientific.net/KEM.734
[8] Chu S N G, Li J C M. Impression creep; a new creep test [J]. J. Mater. Sci., 1977, 12: 2200
doi: 10.1007/BF00552241
[9] Tabor D. A simple theory of static and dynamic hardness [J]. Proc. Roy. Soc., 1948, 192A: 247
[10] Yu H Y, Li J C M. Computer simulation of impression creep by the finite element method [J]. J. Mater. Sci., 1977, 12: 2214
doi: 10.1007/BF00552243
[11] Chu S N G, Li J C M. Impression creep of β-tin single crystals [J]. Mater. Sci. Eng., 1979, 39: 1
[12] Kumar A, Kumar N, Mahto M K, et al. Impression creep behaviour of different zones of pulsed gas tungsten arc welded Ti-6Al-4V alloy [J]. Mater. Today Commun., 2023, 36: 106722
[13] Rashno S, Reihanian M, Ranjbar K. Tensile and creep properties of Al-7Si-0.3 Mg alloy with Zr and Er addition [J]. Mater. Sci. Technol., 2020, 36: 1603
doi: 10.1080/02670836.2020.1809144
[14] Ansary S, Mahmudi R, Esfandyarpour M J. Creep of AZ31 Mg alloy: a comparison of impression and tensile behavior [J]. Mater. Sci. Eng., 2012, 556A: 9
[15] Johnson K L. The correlation of indentation experiments [J]. J. Mech. Phys. Solids, 1970, 18:115
doi: 10.1016/0022-5096(70)90029-3
[16] Reinikainen T, Kivilahti J. Deformation behavior of dilute SnBi (0.5 to 6 at. pct) solid solutions [J]. Metall. Mater. Trans., 1999, 30A: 123
[17] Langdon T G. Identifiying creep mechanisms at low stresses [J]. Mater. Sci. Eng., 2000, 283A: 266
[18] Yue Z F, Probst-Hein M, Eggeler G. Determination of creep parameters from indentation creep experiments: a parametric finite element study for single phase materials [J]. Mater. High Temp., 2000, 17: 449
doi: 10.1179/mht.2000.059
[19] Hyde T H, Yehia K A, Becker A A. Interpretation of impression creep data using a reference stress approach [J]. Int. J. Mech. Sci., 1993, 35: 451
doi: 10.1016/0020-7403(93)90035-S
[20] Naveena, Ganesh Kumar J, Mathew M D. Finite element analysis of plastic deformation during impression creep [J]. J. Mater. Eng. Perform., 2015, 24: 1741
doi: 10.1007/s11665-014-1225-z
[1] 杨景清, 董文超, 陆善平. δ-铁素体含量对高SiN奥氏体不锈钢焊缝性能的影响[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] 詹杰, 陈小江, 邹之利, 苏兴东, 谢世宇, 江亮, 王金铃, 王烈林. 纳米Ag0@ACF材料的制备及其对气态碘的吸附性能[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] 施渊吉, 程诚, 张海涛, 胡道春, 陈晶晶, 黎军顽. β-SiC半导体器件在滑动摩擦中材料去除行为的纳观分析[J]. 材料研究学报, 2025, 39(9): 701-711.
[4] 周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
[5] 王铭宇, 李述军, 和正华, 唐明德, 张思倩, 张浩宇, 周舸, 陈立佳. 激光功率和扫描速度对SLM制备Ti5553合金性能的影响[J]. 材料研究学报, 2025, 39(8): 583-591.
[6] 耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
[7] 陆通, 王亚娜, 张超, 雷芃, 张鸿荣, 黄光伟, 郑立允. BN掺杂对热变形钕铁硼磁体性能的影响[J]. 材料研究学报, 2025, 39(8): 612-618.
[8] 张伟, 张兵, 周军, 刘跃, 王旭峰, 杨锋, 张海芹. 冷轧 Q 值对TA18管材塑性变形织构演变的影响[J]. 材料研究学报, 2025, 39(8): 619-631.
[9] 谭德新, 陈诗慧, 罗小丽, 宁小媚, 王艳丽. 富缺陷Pd纳米片的合成和对甘油的电催化氧化性能[J]. 材料研究学报, 2025, 39(8): 632-640.
[10] 张宁, 王耀奇, 杨毅, 慕延宏, 李震, 陈志勇. Ti65钛合金的超塑变形和微观组织演变[J]. 材料研究学报, 2025, 39(7): 489-498.
[11] 刘晶, 李云杰, 秦煜, 李琳琳. GCr15轴承钢中渗碳体粒径的调控对其硬度的影响[J]. 材料研究学报, 2025, 39(7): 521-532.
[12] 韩杨燚, 张腾昊, 张可, 赵时雨, 汪创伟, 余强, 李景辉, 孙新军. 终冷温度对Ti-V-Mo复合微合金钢析出相、组织和硬度的影响[J]. 材料研究学报, 2025, 39(7): 533-541.
[13] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[14] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.
[15] 姜爱龙, 谭炳治, 庞建超, 石锋, 张允继, 邹成路, 李守新, 伍启华, 李小武, 张哲峰. 蠕墨铸铁RuT300RuT450的低周疲劳性能和损伤机制[J]. 材料研究学报, 2025, 39(6): 443-454.