|
|
β-SiC半导体器件在滑动摩擦中材料去除行为的纳观分析 |
施渊吉1( ), 程诚2, 张海涛1, 胡道春1, 陈晶晶3( ), 黎军顽4 |
1.南京工业职业技术大学 江苏省工业感知及智能制造装备工程研究中心 南京 210023 2.南京航空航天大学材料科学与技术学院 南京 210016 3.南昌理工学院 机械表/界面摩擦磨损与防护润滑研究中心 南昌 330044 4.上海大学材料科学与工程学院 上海 200444 |
|
Nanoscale Analysis of Material Removal Behavior of β-SiC Semiconductor Devices during Sliding Wear |
SHI Yuanji1( ), CHENG Cheng2, ZHANG Haitao1, HU Daochun1, CHEN Jingjing3( ), LI Junwan4 |
1.Industrial Perception and Intelligent Manufacturing Equipment Engineering Research Center of Jiangsu Province, Nanjing University of Industry Technology, Nanjing 210023, China 2.College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China 3.Mechanical Friction Wear and Protective Lubrication Research Center on Surface/Interface, Nanchang Institute of Technology, Nanchang 330044, China 4.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China |
引用本文:
施渊吉, 程诚, 张海涛, 胡道春, 陈晶晶, 黎军顽. β-SiC半导体器件在滑动摩擦中材料去除行为的纳观分析[J]. 材料研究学报, 2025, 39(9): 701-711.
Yuanji SHI,
Cheng CHENG,
Haitao ZHANG,
Daochun HU,
Jingjing CHEN,
Junwan LI.
Nanoscale Analysis of Material Removal Behavior of β-SiC Semiconductor Devices during Sliding Wear[J]. Chinese Journal of Materials Research, 2025, 39(9): 701-711.
[1] |
Giorgis F, Giuliani F, Pirri C F, et al. Wide band gap a-SiC:H films for optoelectronic applications [J]. J. Non-Cryst. Solids, 1998, 227-230: 465
|
[2] |
Zhang Z Y, Guo B, Wang F. Evaluation of switching loss contributed by parasitic ringing for fast switching wide band-gap devices [J]. IEEE Trans. Power Electron., 2019, 34(9): 9082
|
[3] |
Yun N, Lynch J, Sung W. Demonstration and analysis of a 600 V, 10 A, 4H-SiC lateral single RESURF MOSFET for power ICs applications [J]. Appl. Phys. Lett., 2019, 114(19): 192104
|
[4] |
Demenet J L, Amer M, Tromas C, et al. Dislocations in 4H-and 3C-SiC single crystals in the brittle regime [J]. Phys. Status Solidi c, 2013, 10(1): 64
|
[5] |
Bai S, Devaty R P, Choyke W J, et al. Determination of the electric field in 4H/3C/4H-SiC quantum wells due to spontaneous polarization in the 4H SiC matrix [J]. Appl. Phys. Lett., 2003, 83(15): 3171
|
[6] |
Neudeck P G. Electrical impact of SiC structural crystal defects on high electric field devices [J]. Mater. Sci. Forum, 2000, 338-342: 1161
|
[7] |
Feng A, Munir Z A. The effect of an electric field on self-sustaining combustion synthesis: Part II. field-assisted synthesis of μ-SiC [J]. Metall. Mater. Trans., 1995, 26B(3) : 587
|
[8] |
Patrick L, Choyke W J. Static dielectric constant of SiC [J]. Phys. Rev., 1970, 2B(6) : 2255
|
[9] |
Tsui B Y, Fang K L, Lee S D. Electrical instability of low-dielectric constant diffusion barrier film (a-SiC:H) for copper interconnect [J]. IEEE Trans. Electron Devices, 2001, 48(10): 2375
|
[10] |
Prakash S. Heirarchical method for approximating MEMS analysis. Pro. of Beenett Conf. 1999
|
[11] |
Vakis A I, Yastrebov V A, Scheibert J, et al. Modeling and simulation in tribology across scales: an overview [J]. Tribol. Int., 2018, 125: 169
|
[12] |
Deng W L, Kesari H. Depth-dependent hysteresis in adhesive elastic contacts at large surface roughness [J]. Sci. Rep., 2019, 9(1): 1639
doi: 10.1038/s41598-018-38212-z
pmid: 30733488
|
[13] |
Xu H, Komvopoulos K. Fracture mechanics analysis of asperity cracking due to adhesive normal contact [J]. Int. J. Fract., 2013, 181(2): 273
|
[14] |
Gao C H, Liu M. Effects of normal load on the coefficient of friction by microscratch test of copper with a spherical indenter [J]. Tribol. Lett., 2019, 67(1): 8
|
[15] |
Liu M, Xie P. Rate and load effects on scratch behavior of thermoplastics by berkovich indenter [J]. J. Mater. Eng. Perform., 2023, 32(20): 9323
|
[16] |
Buijnsters J G, Shankar P, Van Enckevort W J P, et al. Adhesion analysis of polycrystalline diamond films on molybdenum by means of scratch, indentation and sand abrasion testing [J]. Thin Solid Films, 2005, 474(1-2): 186
|
[17] |
Liu M, Hou D Y, Wu L X. Influence of poly(ethyleneimine) functionalized multi-walled carbon nanotubes on mechanical and tribological behavior of epoxy resins [J]. Mater. Today Commun., 2022, 33: 104480
|
[18] |
Mendas M, Benayoun S. Investigating the effects of microstructure on the wear mechanisms in lamellar cast irons via microscratch tests [J]. Tribol. Int., 2013, 67: 124
|
[19] |
Liu M, Zheng Q, Gao C H. Sliding of a diamond sphere on fused silica under ramping load [J]. Mater. Today Commun., 2020, 25: 101684
|
[20] |
Meng B B, Zhang Y, Zhang F H. Material removal mechanism of 6H-SiC studied by nano-scratching with Berkovich indenter [J]. Appl. Phys., 2016, 122A(3) : 247
|
[21] |
Bifano T G, Dow T A, Scattergood R O. Ductile-regime grinding: a new technology for machining brittle materials [J]. J. Eng. Ind., 1991, 113(2): 184
|
[22] |
Shi S H, Yu Y Q, Wang N C, et al. Investigation of the anisotropy of 4H-SiC materials in nanoindentation and scratch experiments [J]. Materials, 2022, 15(7): 2496
|
[23] |
Tian Z G, Xu X P, Jiang F, et al. Study on nanomechanical properties of 4H-SiC and 6H-SiC by molecular dynamics simulations [J]. Ceram. Int., 2019, 45(17): 21998
|
[24] |
Sun S, Peng X H, Xiang H G, et al. Molecular dynamics simulation in single crystal 3C-SiC under nanoindentation: formation of prismatic loops [J]. Ceram. Int., 2017, 43(18): 16313
|
[25] |
Tian Z G, Chen X, Xu X P. Molecular dynamics simulation of the material removal in the scratching of 4H-SiC and 6H-SiC substrates [J]. Int. J. Extrem. Manuf., 2020, 2(4): 045104
|
[26] |
Wang J S, Fang F Z. Nanometric cutting mechanism of silicon carbide [J]. CIRP Ann., 2021, 70(1): 29
|
[27] |
Tian D Y. Research on 3C-SiC nanometric cutting mechanism under SEM online observation [D]. Tianjin: Tianjin University, 2020
|
[27] |
田东禹. 3C-SiC的SEM在线纳米切削机理研究 [D]. 天津: 天津大学, 2020
|
[28] |
Zhou P, Sun T, Shi X D, et al. Atomic-scale study of vacancy defects in SiC affecting on removal mechanisms during nano-abrasion process [J]. Tribol. Int., 2020, 145: 106136
|
[29] |
Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117(1): 1
|
[30] |
Wang S, Zhou Q T, Zhan H M, et al. Atomic analysis of contact-induced subsurface damage behavior of single crystal SiC based on molecular simulation [J]. Chin. J. Mater. Res., 2023, 37(12): 943
doi: 10.11901/1005.3093.2023.126
|
[30] |
王 胜, 周俏亭, 占慧敏 等. 单晶碳化硅接触中亚表层损伤与破坏机理的原子尺度分析 [J]. 材料研究学报, 2023, 37(12): 943
|
[31] |
Guo J, Chen J J, Wang Y Q. Temperature effect on mechanical response of c-plane monocrystalline gallium nitride in nanoindentation: a molecular dynamics study [J]. Ceram. Int., 2020, 46(8): 12686
|
[32] |
Zhao T. Study on the instrinsic relationship between nanometric cutting mechanism and microstructure evolution of single crystal silicon [D]. Qinhuangdao: Yanshan University, 2015
|
[32] |
赵 腾. 单晶硅纳米切削机理与微结构演化的内在关联性研究 [D]. 秦皇岛: 燕山大学, 2015
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|