|
|
稀土离子掺杂硅藻负极材料的制备及其电化学性能 |
孙世贸1, 刘红昌1,2( ), 刘宏伟1,2, 王军1,2, 商晨楷1 |
1.中南大学资源加工与生物工程学院 长沙 410083 2.中南大学 生物冶金教育部重点实验室 长沙 410083 |
|
Preparation and Electrochemical Properties of Rare Earth Ion Doped Diatom Anode Materials |
SUN Shimao1, LIU Hongchang1,2( ), LIU Hongwei1,2, WANG Jun1,2, SHANG Chenkai1 |
1.School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China 2.Key Lab of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China |
引用本文:
孙世贸, 刘红昌, 刘宏伟, 王军, 商晨楷. 稀土离子掺杂硅藻负极材料的制备及其电化学性能[J]. 材料研究学报, 2025, 39(7): 499-509.
Shimao SUN,
Hongchang LIU,
Hongwei LIU,
Jun WANG,
Chenkai SHANG.
Preparation and Electrochemical Properties of Rare Earth Ion Doped Diatom Anode Materials[J]. Chinese Journal of Materials Research, 2025, 39(7): 499-509.
[1] |
Thackeray M M, Wolverton C, Isaacs E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries [J]. Energy Environ. Sci., 2012, 5(7): 7854
|
[2] |
Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? [J]. Science, 2014, 343(6176): 1210
|
[3] |
Simon P, Gogotsi Y. Materials for electrochemical capacitors [J]. Nat. Mater., 2008, 7(11): 845
doi: 10.1038/nmat2297
pmid: 18956000
|
[4] |
Jin Y, Zhu B, Lu Z D, et al. Challenges and recent progress in the development of Si anodes for lithium-ion battery [J]. Adv. Energy Mater., 2017, 7(23): 1700715
|
[5] |
Goodenough J B, Kim Y. Challenges for rechargeable Li batteries [J]. Chem. Mater., 2010, 22(3): 587
|
[6] |
Norberg A N, Wagner N P, Kaland H, et al. Silica from diatom frustules as anode material for Li-ion batteries [J]. RSC Adv., 2019, 9(70): 41228
doi: 10.1039/c9ra07271c
|
[7] |
Wang Z, Zhao J K, Liu S T, et al. Cultured diatoms suitable for the advanced anode of lithium ion batteries [J]. ACS Sustain. Chem. Eng., 2021, 9(2): 844
|
[8] |
Chen Y X, Liu H C, Xie W Q, et al. Diatom frustules decorated with Co nanoparticles for the advanced anode of Li-ion batteries [J]. Small, 2023, 19(30): 2300707
|
[9] |
Chen Y X, Liu H C, Shen Z, et al. Developing a novel lithium-ion battery anode material via thiol functionalization of diatom frustules plus Ag modification [J]. Iscience, 2024, 27(2): 108850
|
[10] |
Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414(6861): 359
|
[11] |
Liu Z H, Yu Q, Zhao Y L, et al. Silicon oxides: a promising family of anode materials for lithium-ion batteries [J]. Chem. Soc. Rev., 2019, 48(1): 285
doi: 10.1039/c8cs00441b
pmid: 30457132
|
[12] |
Zhao H Y, Xia J L, Yin D D, et al. Rare earth incorporated electrode materials for advanced energy storage [J]. Coord. Chem. Rev., 2019, 390: 32
|
[13] |
Massari S, Ruberti M. Rare earth elements as critical raw materials: Focus on international markets and future strategies [J]. Resour. Policy, 2013, 38(1): 36
|
[14] |
Primo A, Marino T, Corma A, et al. Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nano-particulate CeO2 obtained by a biopolymer templating method [J]. J. Am. Chem. Soc., 2012, 134(3): 1892
|
[15] |
Chen K F, Xue D F. Rare earth and transitional metal colloidal supercapacitors [J]. Sci. China Technol. Sci., 2015, 58(11): 1768
|
[16] |
Henao J, Martinez-Gomez L. Review: on rare-earth perovskite-type negative electrodes in nickel-hydride (Ni/H) secondary batteries [J]. Mater. Renew. Sustain., 2017, 6(2): 7
|
[17] |
Ghosh P, Mahanty S, Basu R N. Lanthanum-doped LiCoO2 cathode with high rate capability [J]. Electrochim. Acta, 2009, 54(5): 1654
|
[18] |
Luo S H, Tian Y, Li H, et al. Influence of lanthanum doping on performance of LiFePO4 cathode materials for lithium-ion batteries [J]. J. Rare Earths, 2010, 28(3): 439
|
[19] |
Zhang Q Y, Zhou J, Zeng G C, et al. Effect of lanthanum and yttrium doped LiFePO4 cathodes on electrochemical performance of lithium-ion battery [J]. J. Mater. Sci., 2023, 58(20): 8463
|
[20] |
Ning F H, Xu B, Shi J, et al. Structural, electronic, and Li migration properties of RE-doped (RE = Ce, La) LiCoO2 for Li-ion batteries: a first-principles investigation [J]. J. Phys. Chem., 2016, 120C(33) : 18428
|
[21] |
Wang J W, Sun X L, Xu L L, et al. Organic-rare earth hybrid anode with superior cyclability for lithium ion battery [J]. Adv. Mater. Interfaces, 2020, 7(9): 1902168
|
[22] |
Zheng X Y, Yang C K, Chang X H, et al. Synergism of rare earth trihydrides and graphite in lithium storage: Evidence of hydrogen-enhanced lithiation [J]. Adv. Mater., 2018, 30(3): 1704353
|
[23] |
Yin D D, Zhao H Y, Li N, et al. Enhancing the rate capability of niobium oxide electrode through rare-earth doping engineering [J]. Batteries Supercaps, 2019, 2(11): 924
|
[24] |
Xia J L, Zhao H Y, Pang W K, et al. Lanthanide doping induced electrochemical enhancement of Na2Ti3O7 anodes for sodium-ion batteries [J]. Chem. Sci., 2018, 9(14): 3421
|
[25] |
Wang J W, Zhou B, Zhao H Y, et al. A sandwich-type sulfur cathode based on multifunctional ceria hollow spheres for high-performance lithium-sulfur batteries [J]. Mater. Chem. Front., 2019, 3(7): 1317
|
[26] |
Wang J W, Sun X L, Zhao H Y, et al. Superior-performance aqueous zinc ion battery based on structural transformation of MnO2 by rare earth doping [J]. J. Phys. Chem., 2019, 123C(37) : 22735
|
[27] |
Zhao H Y, Xu J, Yin D D, et al. Electrolytes for batteries with earth-abundant metal anodes [J]. Chem-A Eur. J., 2018, 24(69): 18220
|
[28] |
Rodea-Palomares I, Boltes K, Fernández-Piñas F, et al. Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms [J]. Toxicolog. Sci., 2011, 119(1): 135
|
[29] |
Chen J J, Chen J X. Formation and thermal stability of dual glass phases in the h-BN/SiO2/Yb-Si-Al-O composites [J]. J. Eur. Ceram. Soc., 2020, 40(2): 456
|
[30] |
Sun Q, Zhang B, Fu Z W. Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries [J]. Appl. Surf. Sci., 2008, 254(13): 3774
|
[31] |
Chang W S, Park C M, Kim J H, et al. Quartz (SiO2): A new energy storage anode material for Li-ion batteries [J]. Energy Environ. Sci., 2012, 5(5): 6895
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|