Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (7): 481-488    DOI: 10.11901/1005.3093.2024.356
  研究论文 本期目录 | 过刊浏览 |
双连续互穿铝基多孔复合材料的制备和热处理强化
刘恩典1, 白玉1(), 李嘉文1, 郝海1,2()
1.大连理工大学材料科学与工程学院 凝固控制与数字化制备技术辽宁省重点实验室 大连 116024
2.大连理工大学宁波研究院 宁波 315016
Preparation of Bi-continuous Interpenetrating Porous Composite and Its Heat Treatment Enhancement
LIU Endian1, BAI Yu1(), LI Jiawen1, HAO Hai1,2()
1.Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2.Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
引用本文:

刘恩典, 白玉, 李嘉文, 郝海. 双连续互穿铝基多孔复合材料的制备和热处理强化[J]. 材料研究学报, 2025, 39(7): 481-488.
Endian LIU, Yu BAI, Jiawen LI, Hai HAO. Preparation of Bi-continuous Interpenetrating Porous Composite and Its Heat Treatment Enhancement[J]. Chinese Journal of Materials Research, 2025, 39(7): 481-488.

全文: PDF(10246 KB)   HTML
摘要: 

将熔体发泡和渗流铸造相结合制备双连续互穿多孔复合材料(泡沫铝/ZL111合金)并研究其特征单元的力学性能和热处理强化。结果表明,与单一构成的总和相比,复合材料的抗压强度提高了66%,平台应力提高了204%。为了进一步提高复合材料的综合力学性能,对特征单元进行了T6热处理。T6热处理后的特征单元其比压缩强度、平台应力和能量吸收比热处理前分别提高了73.54%、107%和83.18%。在T6热处理过程中共晶硅由片层状转变为等轴球状,这种转变降低了材料的弹性模量但是其压缩强度和平台应力显著提高,从而使其能量吸收性能提高。这表明,这种互穿多孔复合材料保留了单一构成的优势而具有优异的能量吸收能力。同时,对这种双连续互穿多孔金属(合金材料)复合材料的适当热处理可提高其综合力学性能。

关键词 复合材料铝基多孔双连续互穿结构压缩性能T6热处理能量吸收    
Abstract

Foam metals have become a hot choice for protection due to their excellent specific strength and energy absorption capabilities, and the advancement of light-weighting has posed higher performance requirements and challenges for foam metals. Herein, the disordered-ordered interpenetrating porous composite (Al foam /ZL111 Al-alloy) was prepared via a combination technique of melt foaming and infiltration casting methods. The corresponding quasi-static mechanical properties of characteristic units were analyzed, and the mechanical properties of the composite structural characteristic units may be greatly improved compared to the single structure. The compressive strength of the composite is increased by 66% compared to the sum of their single components, and the plateau stresses were increased by 204%. In order to further improve the comprehensive mechanical properties of the composite structure, the characteristic unit was subjected to T6 heat-treatment and tested in quasi-static compression. The specific compressive strength, plateau stress, and energy-absorbing capacity of the T6 heated unit were enhanced by 73.54%, 107%, and 83.18%, respectively, compared with those before heat treatment. According to the microstructure examination, it can be seen that the eutectic silicon is transformed from the original lamellar to the equiaxed spherical shape after the T6 heat treatment, which reduces the elastic modulus of the material to a certain extent, but significantly improves the compressive strength and plateau stress of the material, and thus improves the energy-absorbing capacity of the composite structure. The interpenetrating porous composite structure can effectively retain the respective advantages of the single component and thus show excellent energy absorption ability, therefore, an appropriate heat treatment of the bi-continuous interpenetrating porous metal (alloy material) structure is an effective means to improve the comprehensive mechanical properties of the material.

Key wordscomposite    Al-matrix porous    bi-continuous interpenetrating structure    compression properties    T6 heat treatment    energy absorption
收稿日期: 2024-08-21     
ZTFLH:  TG146.2+1  
基金资助:国家自然科学基金(52171030)
通讯作者: 白玉,副教授,ybai@dlut.edu.cn,研究方向为高性能钢及合金轻量化;
郝海,教授,haohai@dlut.edu.cn,研究方向为合金轻量化
Corresponding author: BAI Yu, Tel: (0411)84709458, E-mail: ybai@dlut.edu.cn;
HAO Hai, Tel: (0411)84709458, E-mail: haohai@dlut.edu.cn
作者简介: 刘恩典,男,1994年生,博士生
图1  双连续互穿复合多孔材料的制备过程和特征单元构成的示意
图2  对特征单元T6热处理制度
图3  热处理前后特征单元结构和内部气孔结构参数及其形貌
图4  构型及其组成的力学性能
图5  构型及其组成的能量吸收性能
图6  T6热处理前后ZL111合金中的微观组织和物相
图7  T6热处理前后ZL111/泡沫铝界面的形貌和元素分布
[1] Wang H, Fu Y, Su M M, et al. A novel method of indirect rapid prototyping to fabricate the ordered porous aluminum with controllable dimension variation and their properties [J]. J. Mater. Process. Technol., 2019, 266: 373
[2] Zhou X Y, Qin J, Liu X Q, et al. Relationship among pore wall thickness, porosity and average pore size of aluminum foam [J]. Mater. Rep., 2010, 24: 75
[2] 周向阳, 覃 静, 刘希泉 等. 泡沫铝孔壁厚度、孔隙率和平均孔径之间的关系 [J]. 材料导报, 2010, 24: 75
[3] Wang H, Fu Y, Su M M, et al. Effect of structure design on compressive properties and energy absorption behavior of ordered porous aluminum prepared by rapid casting [J]. Mater. Des., 2019, 167: 107631
[4] Du Plessis A, Razavi S M J, Benedetti M, et al. Properties and applications of additively manufactured metallic cellular materials: A review [J]. Prog. Mater. Sci., 2022, 125: 100918
[5] Maconachie T, Leary M, Lozanovski B, et al. SLM lattice structures: Properties, performance, applications and challenges [J]. Mater. Des., 2019, 183: 108137
[6] Yuan G Z, Li Y X, Zhou X, et al. Preparation of complex shaped aluminum foam by a novel casting-foaming method [J]. Mater. Lett., 2021, 293: 129673
[7] Movahedi N, Linul E. Quasi-static compressive behavior of the ex-situ aluminum-alloy foam-filled tubes under elevated temperature conditions [J]. Mater. Lett., 2017, 206: 182
[8] Benedetti M, Du Plessis A, Ritchie R O, et al. Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication [J]. Mater. Sci. Eng. R, 2021, 144: 100606
[9] Zhou X, Li Y X, Chen X. Development of AlMg35-TiH2 composite foaming agent and fabrication of small pore size aluminium foams [J]. J. Mater. Process. Technol., 2020, 283: 116698
[10] Huang W Z, Chen Y, Chen P, et al. Stability of pore structure of ZL102 Al-alloy foam prepared by secondary foaming method [J]. Chin. J. Mater. Res., 2024, 38(8): 605
doi: 10.11901/1005.3093.2023.543
[10] 黄闻战, 陈 尧, 陈 鹏 等. 用二次发泡法制备SiC/Al复合泡沫铝孔结构的稳定性 [J]. 材料研究学报, 2024, 38(8): 605
doi: 10.11901/1005.3093.2023.543
[11] Salehi M, Mirbagheri S M H, Ramiani A J. Efficient energy absorption of functionally-graded metallic foam-filled tubes under impact loading [J]. T. Nonferr. Metal. Soc., 2021, 31: 92
doi: 10.1016/S1003-6326(20)65480-2
[12] Wang A S, Yu X H, Wang H, et al. Dynamic response of sandwich tubes with continuously density-graded aluminum foam cores under internal explosion load [J]. Materials, 2022, 15: 6966
[13] Yan L L, Yu B, Han B. Compressive strength and energy absorption of sandwich panels with aluminum foam-filled corrugated cores [J]. Compos. Sci. Technol., 2013, 86: 142
[14] Wang Z, Mei X, Cao X A, et al. Crushing energy absorption mechanisms of the composite-metal-foam hybrid tubes under axial and oblique loads [J]. Acta Mater. Compos. Sin., 2023, 40(11): 6450
[14] 王 振, 梅 轩, 曹悉奥 等. 轴向和斜向加载下复合材料-金属-泡沫混杂管件的压溃吸能机制 [J]. 复合材料学报, 2023, 40(11): 6450
[15] Zhang M Y, Yu Q, Liu Z Q, et al. 3D printed Mg-NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency [J]. Sci. Adv., 2020, (6): a5581
[16] Bauer J, Sala-Casanovas M, Amiri M, et al. Nanoarchitected metal/ceramic interpenetrating phase composites [J]. Sci. Adv., 2022, (8): o3080
[17] Liu E D, Bai Y, Li J W, et al. Bi-continuous interpenetrated porous composite integrating the high strength and long plateau stress stage prepared by an in situ method [J]. Compos. Part A-Appl. S., 2024, 185: 108315
[18] Zhang Z C, Feng H M, Xu T, et al. Compression performances of integral-forming aluminum foam sandwich [J]. Compos. Struct., 2022, 283: 115090
[19] Jhaver R, Tippur H. Processing, compression response and finite element modeling of syntactic foam based interpenetrating phase composite (IPC) [J]. Mater. Sci. Eng. A, 2009, 499: 507
[20] Li X W, Tan Y H, Wang P. Metallic microlattice and epoxy interpenetrating phase composites: Experimental and simulation studies on superior mechanical properties and their mechanisms [J]. Compos. Part A-Appl. S., 2020, 135: 105934
[21] Wang Y W, Zuo X Q, Ran S J, et al. Effects of TiB2 content and T6 heat treatment on microstructure and hardness of in-situ TiB2/ZL111 composites [J]. Mater. Rep., 2019, 33(4): 1371
[21] 王应武, 左孝青, 冉松江 等. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响 [J]. 材料导报, 2019, 33(4): 1371
[22] Ji C, Huang H G, Wang T. Recent advances and future trends in processing methods and characterization technologies of aluminum foam composite structures: A review [J]. J. Manuf. Process., 2023, 93: 116
[1] 陈昱溟, 朱晓勇, 谭晓月, 刘家琴, 吴玉程. 面向等离子体第一壁W-Y2O3 复合材料的力学性能[J]. 材料研究学报, 2025, 39(7): 510-520.
[2] 孙世贸, 刘红昌, 刘宏伟, 王军, 商晨楷. 稀土离子掺杂硅藻负极材料的制备及其电化学性能[J]. 材料研究学报, 2025, 39(7): 499-509.
[3] 马雪娥, 胡美凤, 宋雪丽, 常玥, 查飞. 坡缕石负载Zn-In LDO/ZnS/In2S3 复合材料对甲基橙的光催化降解[J]. 材料研究学报, 2025, 39(6): 413-424.
[4] 杨言言, 刘堰, 杨颂, 汪紫彤, 朱峰, 余钟亮, 郝晓刚. 石墨烯掺杂的聚吡咯/钴镍双氢氧化物电控分离低浓度磷酸盐的性能[J]. 材料研究学报, 2025, 39(6): 425-434.
[5] 胡勇, 路世峰, 杨滔, 潘春旺, 刘林成, 赵龙志, 唐延川, 刘德佳, 焦海涛. FeCoCrNiMn/6061铝基复合材料的组织性能[J]. 材料研究学报, 2025, 39(5): 353-361.
[6] 刘艳云, 王娜, 张志华, 白文, 刘云洁, 陈勇强, 李万喜, 李瑀. MOFs衍生C/LDH/rGO网状复合材料构筑高比容量水系锌离子电容器[J]. 材料研究学报, 2025, 39(5): 371-376.
[7] 李颖, 聂学童, 钱立国, 朱忆仁. Co3O4/ZnO@MG-C3Nx 催化剂的合成及其可见光降解亚甲基蓝的性能[J]. 材料研究学报, 2025, 39(4): 241-250.
[8] 张森晗, 王欢, 张家慷, 冯效迁, 张启俭, 赵永华. 改性HZSM-5/Cu-ZnO-Al2O3 催化剂用于二甲醚水蒸气重整制氢[J]. 材料研究学报, 2025, 39(4): 251-258.
[9] 孙波, 张天宇, 赵强强, 王函, 佟钰, 曾尤. MXene@碳纤维毡复合薄膜的电磁屏蔽性能[J]. 材料研究学报, 2025, 39(4): 289-295.
[10] 唐晨, 张耀宗, 王一凡, 刘超, 赵德润, 董鹏昊. α-Fe2O3/TiO2 光催化材料的制备及其降解苯酚的性能[J]. 材料研究学报, 2025, 39(3): 233-240.
[11] 于文静, 刘春忠, 张洪亮, 卢天倪, 王东, 李娜, 黄震威. SiC含量对SiCP/6092铝基复合材料微弧氧化膜耐蚀性的影响[J]. 材料研究学报, 2025, 39(2): 153-160.
[12] 包秀坤, 史桂梅. NiCo@C(N)/NC纳米复合物的制备及其吸波性能[J]. 材料研究学报, 2025, 39(2): 126-136.
[13] 崔思凯, 付广艳, 林立海, 颜雨坤, 李处森. 碳化硅吸波材料的原位反应法制备及其机理[J]. 材料研究学报, 2024, 38(9): 659-668.
[14] 张恒宇, 黄照单, 段体岗, 温青, 李若灿, 吴厚燃, 马力, 张海兵. 碳基Pt@Co多层次复合催化阴极海水介质电催化氧还原行为研究[J]. 材料研究学报, 2024, 38(8): 632-640.
[15] 黄闻战, 陈尧, 陈鹏, 张玉洁, 陈星宇. 用二次发泡法制备SiC/Al复合泡沫铝孔结构的稳定性[J]. 材料研究学报, 2024, 38(8): 605-613.