Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (4): 281-288    DOI: 10.11901/1005.3093.2024.257
  研究论文 本期目录 | 过刊浏览 |
三元复配杀菌剂对P110钢腐蚀行为的影响
胥聪敏1(), 孙姝雯1, 朱文胜2, 陈志强1, 李城臣1
1.西安石油大学材料科学与工程学院 西安 710065
2.中海油常州涂料化工研究院有限公司 常州 213000
Influence of Ternary Compound Biocides on Corrosion Behavior of P110 Steel
XU Congmin1(), SUN Shuwen1, ZHU Wensheng2, CHEN Zhiqiang1, LI Chengchen1
1.School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
2.CNOOC Changzhou Paint and Coating Industry Research Institute Co., Ltd, Changzhou 213000, China
引用本文:

胥聪敏, 孙姝雯, 朱文胜, 陈志强, 李城臣. 三元复配杀菌剂对P110钢腐蚀行为的影响[J]. 材料研究学报, 2025, 39(4): 281-288.
Congmin XU, Shuwen SUN, Wensheng ZHU, Zhiqiang CHEN, Chengchen LI. Influence of Ternary Compound Biocides on Corrosion Behavior of P110 Steel[J]. Chinese Journal of Materials Research, 2025, 39(4): 281-288.

全文: PDF(8430 KB)   HTML
摘要: 

采用生物培养技术、失重分析、表面分析技术以及电化学测试等手段,研究了油井管P110钢在不同油水混合比例(0.5∶9.5、1∶9、2∶8,质量比)条件下在含硫酸盐还原菌(SRB)和铁氧化菌(IOB)环境中的腐蚀行为及其机理,以及三元复配杀菌剂对P110钢混合菌腐蚀行为的影响。结果表明,在不同油水比环境中,油水比为2∶8时P110钢的腐蚀速率最高(0.2787 ± 0.0042),属于重度腐蚀;其原因是,原油含量的提高使溶液中的腐蚀性物质和细菌所需的碳源也随之增加,为细菌的生长提供了适宜的条件。加入三元复配杀菌剂使P110钢在不同油水比条件下的腐蚀速率显著降低,尤其是在油水比为2∶8的环境中腐蚀不同时间后其对SRB与IOB的杀菌率均分别达到93%、85%以上,缓蚀率为38.08%~64.11%,腐蚀3 d后加入复配杀菌剂的效果最佳,表明复配杀菌剂对减缓P110钢混合菌腐蚀的效果极为显著。其原因是,复配杀菌剂中的D-络氨酸能使已有的生物膜分散和脱落,并能改变细胞结构和破环氧浓差腐蚀环境,而二甲基亚砜作为增效渗透剂能加速杀菌剂四羟甲基硫酸磷(THPS)进入生物膜内。复配杀菌剂中各组分的协同作用,加速了混合菌的杀灭进程从而抑制P110钢的腐蚀。

关键词 金属材料油水混合环境SRB+IOB混合菌三元复配杀菌剂腐蚀行为    
Abstract

The corrosion behavior of oil well tubing P110 steel in environments of different oil-water mixing ratios (0.5:9.5, 1:9, 2:8, quality ratios) in the presence of sulfate-reducing bacteria (SRB) and iron-oxidizing bacteria (IOB) were investigated via biological culture technology, weightlessness measurement, surface analysis and electrochemical testing. The results showed that the corrosion rate of P110 steel is maximum (0.2787 ± 0.0042) at an oil-water ratio of 2:8, while the steel is suffered from heavy corrosion in environments of different oil-water ratio. This is due to that the increase in oil content may lead to an increase in the carbon source, which is in favor of the formation corrosive substances and the growth of bacteria in the solution. After adding ternary compound biocides, the corrosion rate of P110 steel in environments of different oil-water ratio were significantly reduced, especially for the corrosion test in environment of the oil-water ratio of 2:8 for different times, its bactericidal rate of SRB and IOB were above 93% and 85%, respectively with corrosion inhibition rate between 38.08% and 64.11%. In fact, the best inhibition effect was achieved by adding the compounded biocides after 3 d of corrosion, indicating that the effect of compounded biocides on slowing down the corrosion of mixed bacteria of P110 steel was extremely significant; this is due to the addition of compound biocides, which containing D-tyrosine can lead to the existing biofilm dispersion, shedding, while changing the cell structure, destroys the concentration environment, and dimethyl sulfoxide as a synergistic penetrant, can accelerate the Tetrakis hydroxymethyl phosphonium sulfate (THPS) into the biofilm, the synergistic effect of the components in the compound biocides accelerates the process of killing the mixed bacteria, inhibiting the P110 steel corrosion.

Key wordsmetallic materials    oil-water mixing environment    SRB+IOB mixed bacteria    ternary compounding biocides    corrosion behavior
收稿日期: 2024-06-05     
ZTFLH:  TG172.7  
基金资助:国家自然科学基金(51974245);国家自然科学基金(21808182);陕西省重点研发计划(2020GY-234);西安石油大学材料科学与工程学院西安市高性能油气田材料重点实验室,陕西省高等学校重点实验室“油气田腐蚀防护与新材料”,西安石油大学研究生创新与实践能力培养项目(YCS23213149);陕西省市场监督管理局科技计划项目“(B+M/A)大变形管线钢的塑性增长规律研究”(2023KY19)
通讯作者: 胥聪敏,教授,cmxu@xsyu.edu.cn,研究方向为金属腐蚀与防护
Corresponding author: XU Congmin, Tel: (029)88382607, E-mail: cmxu@xsyu.edu.cn
作者简介: 胥聪敏,女,1977年生,博士
图1  P110钢在不同油水比的混合菌环境中腐蚀14 d后的质量损失和缓蚀率
图2  P110钢在油水比为2∶8的混合菌环境中腐蚀14 d的腐蚀速率和缓蚀率
Time of biocides addition / dSRB sterilization rate / %IOB sterilization rate / %Corrosion inhibition rate / %
099.7385.0038.08
393.6785.0064.11
797.00100.0059.33
14100.00100.0047.13
表1  P110钢在油水比为2∶8的混合菌环境中腐蚀14 d后杀菌率和缓蚀率
图3  P110钢在不同时间添加复配杀菌剂腐蚀14 d后的SEM照片和EDS谱
图4  P110钢在油水比为2∶8的混合菌环境中腐蚀14 d后的XRD谱
图5  P110钢在不同时间添加复配杀菌剂腐蚀14 d后的极化曲线
With/without compounded biocidesba / mVbc / mVEcorr / mVIcorr / A·cm-2
No compounded biocides50.45694.1-58626.4 × 10-5
Addition of compounded biocides after 0 d102.2226.9-7013.58 × 10-5
Addition of compounded biocides after 3 d57.27109.7-6420.52 × 10-5
Addition of compounded biocides after 7 d329.480.80-7632.51 × 10-5
Addition of compounded biocides after 14 d83.95449.7-55014.0 × 10-5
表2  P110钢在不同时间添加复配杀菌剂后腐蚀14 d后的Tafel曲线拟合结果
1 Gao J, Guo J X. Current status of corrosion studies on oil well pipe materials [J]. Saf. Technol. Spec. Equip., 2023, (6): 33
1 高 杰, 郭克星. 油井管材料腐蚀研究现状 [J]. 特种设备安全技术, 2023, (6): 33
2 Ma H N, Zhang W D, Wang Y, et al. Advances in corrosion growth modeling for oil and gas pipelines: a review [J]. Process Saf. Environ. Prot., 2023, 171: 71
3 Mubarak G, Verma C, Barsoum I, et al. Internal corrosion in oil and gas wells during casings and tubing: challenges and opportunities of corrosion inhibitors [J]. J. Taiwan Inst. Chem. Eng., 2023, 150: 105027
4 Shi L, Luo K, Wang J G, et al. Failure analysis of an offshore drilling casing under harsh working conditions [J]. Eng. Failure Anal., 2021, 120: 105018
5 Wei B X, Xu J, Gao L Q, et al. Research progress on sulfate reducing bacteria induced corrosion of pipeline steel in soil environment [J]. Surf. Technol., 2021, 50(3): 30
5 韦博鑫, 许 进, 高立群 等. 油气管线钢土壤环境硫酸盐还原菌腐蚀研究进展 [J]. 表面技术, 2021, 50(3): 30
6 Lyu M Y, Li Z X, Du M, et al. Formation, function and evolution of biofilm in microbiologically influenced corrosion [J]. Surf. Technol., 2019, 48(11): 59
6 吕美英, 李振欣, 杜 敏 等. 微生物腐蚀中生物膜的生成、作用与演变 [J]. 表面技术, 2019, 48(11): 59
7 Rao P, Mulky L. Microbially influenced corrosion and its control measures: a critical review [J]. J. Bio Tribo-Corros., 2023, 9(3): 57
8 Wang H, Zhao W L, Shu Z H, et al. Failure analysis of casing dropping in shale oil well during large scale volume fracturing [J]. Eng. Failure Anal., 2020, 118: 104849
9 Bairi L R, Bhuyan P, Ghosh A, et al. Microbially induced corrosion issues in the underground buried crude oil and natural gas bearing pipelines: a review [J]. Mater. Corros., 2024, 75(2): 197
10 Knisz J, Eckert R, Gieg L M, et al. Microbiologically influenced corrosion-more than just microorganisms [J]. FEMS Microbiol. Rev., 2023, 47(5): 1
11 Liu F Q. Research progress on microbial corrosion of aluminum alloys [J]. Spec. Cast. Nonferrous Alloys, 2023, 43(9): 1186
11 刘凤芹. 铝合金微生物腐蚀研究进展 [J]. 特种铸造及有色合金, 2023, 43(9): 1186
12 Zhang T S, Wang J L, Zhang F, et al. Progress of biocides for corrosive microorganisms in industrial systems [J]. Surf. Technol., 2021, 50(11): 1
12 张天遂, 王军磊, 张 斐 等. 用于工业系统腐蚀微生物的杀菌剂研究进展 [J]. 表面技术, 2021, 50(11): 1
13 Płaza G, Achal V. Biosurfactants: eco-friendly and innovative biocides against biocorrosion [J]. Int. J. Mol. Sci., 2020, 21(6): 2152
14 Jia R, Yang D Q, Abd Rahman H B, et al. Laboratory testing of enhanced biocide mitigation of an oilfield biofilm and its microbiologically influenced corrosion of carbon steel in the presence of oilfield chemicals [J]. Int. Biodeterior. Biodegrad., 2017, 125: 116
15 Tang L, Zhang Z B, Ding W Y, et al. Preparation, characterization, and Staphylococcus aureus biofilm elimination effect of baicalein-loaded tyrosine/hyaluronic acid/β-cyclodextrin-grafted chitosan nano-delivery system [J]. Int. J. Biol. Macromol., 2024, 254: 128066
16 Cui X L, Liu F H, Cai S, et al. Charge adaptive phytochemical-based nanoparticles for eradication of methicillin-resistant staphylococcus aureus biofilms [J]. Asian J. Pharm. Sci., 2024, 19: 100923
17 Elgamoudi B A, Taha T, Korolik V. Inhibition of Campylobacter jejuni biofilm formation by D-amino acids [J]. Antibiotics, 2020, 9(11): 836
18 Li Y C, Jia R, Al-Mahamedh H H, et al. Enhanced biocide mitigation of field biofilm consortia by a mixture of D-amino acids [J]. Front. Microbiol., 2016, 7: 896
doi: 10.3389/fmicb.2016.00896 pmid: 27379039
19 Unsal T, Wang D, Kumseranee S, et al. Assessment of 2, 2-dibromo-3-nitrilopropionamide biocide enhanced by D-tyrosine against zinc corrosion by a sulfate reducing bacterium [J]. Ind. Eng. Chem. Res., 2021, 60(10): 4009
20 Xu C M, Zhang J R, Zhu W S, et al. Effect of D-amino acids on corrosion behavior of different steels due to mixed bacteria [J]. Chin. J. Mater. Res., 2023, 37(12): 924
doi: 10.11901/1005.3093.2022.656
20 胥聪敏, 张津瑞, 朱文胜 等. D-氨基酸对不同钢材混合菌腐蚀行为的影响 [J]. 材料研究学报, 2023, 37(12): 924
doi: 10.11901/1005.3093.2022.656
21 Xu C M, Li X L, Fu A Q, et al. Effect of compound bactericidal corrosion inhibitor on corrosion behavior of N80 steel at different temperatures [J]. Chin. J. Mater. Res., 2024
21 胥聪敏, 李雪丽, 付安庆 等. 复配杀菌缓蚀剂对N80钢在SRB环境中微生物腐蚀行为的影响 [J]. 材料研究学报, 2024
22 Li X, Shang D Z, Li Z M, et al. SRB corrosion behavior of L245 pipeline steel with different cathode polarization potential [J]. Surf. Technol., 2022, 51(7): 207
22 李 鑫, 尚东芝, 李子墨 等. 不同阴极极化条件对L245的SRB腐蚀行为影响 [J]. 表面技术, 2022, 51(7): 207
23 Shi X B, Yang C G, Yan W, et al. Microbiologically influenced corrosion of pipeline steels [J]. J. Chin. Soc. Corros. Prot., 2019, 39(1): 9
23 史显波, 杨春光, 严 伟 等. 管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2019, 39(1): 9
doi: 10.11902/1005.4537.2018.147
24 Xu C M, Gao H R, Zhu W S, et al. Study on the behavior and mechanism of D-amino acid dispersing biofilm [J]. Mater. Rep., 2023, 37(1): 21050076
24 胥聪敏, 高豪然, 朱文胜 等. D-氨基酸驱散生物膜的行为与作用机理研究 [J]. 材料导报, 2023, 37(1): 21050076
25 Song Y, Chen S G. Effect of temperature on corrosion behavior of copper-nickel alloys by sulphate-reducing bacteria in anaerobic environment [J]. Surf. Technol., 2022, 51(3): 95
25 宋 翼, 陈守刚. 温度对厌氧环境中硫酸盐还原菌所致铜镍合金腐蚀行为的影响 [J]. 表面技术, 2022, 51(3): 95
26 Xu D, Wen J, Fu W, et al. D-amino acids for the enhancement of a binary biocide cocktail consisting of THPS and EDDS against an SRB biofilm [J]. World J. Microbiol. Biotechnol., 2012, 28: 1641
27 Zhang T Z, Liu L P, Li W C, et al. Advances in quorum sensing regulating formation of biofilm [J]. Chin. J. Bioprocess Eng., 2020, 18(2): 177
27 张天震, 刘伶普, 李文超 等. 群体感应系统介导细菌生物膜形成的研究进展 [J]. 生物加工过程, 2020, 18(2): 177
28 Gu T Y, Jia R, Unsal T, et al. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria [J]. J. Mater. Sci. Technol., 2019, 35(4): 631
doi: 10.1016/j.jmst.2018.10.026
29 Gu T Y, Wang D, Lekbach Y, et al. Extracellular electron transfer in microbial biocorrosion [J]. Curr. Opin. Electrochem., 2021, 29: 100763
30 Xu C M, Yang X, Zhu W S, et al. Effect of green bactericidal corrosion inhibitor on corrosion behavior of carbon steel with different surface roughness [J]. Surf. Technol., 2023, 52(11): 309
30 胥聪敏, 杨 兴, 朱文胜 等. 绿色杀菌缓蚀剂对不同粗糙度碳钢的腐蚀行为影响研究 [J]. 表面技术, 2023, 52(11): 309
[1] 陈室雨, 李卫, 旷海燕, 高绍巍, 庞东方. 一种稀土Lu3+ 掺杂无铅压电陶瓷的介电、铁电和压电性能[J]. 材料研究学报, 2025, 39(4): 272-280.
[2] 符纯国, 徐世伟, 杨晓益, 李萌蘖. 焊接热源模式对5083-H111铝合金接头性能的影响[J]. 材料研究学报, 2025, 39(4): 305-313.
[3] 冉子祚, 张爽, 苏兆翼, 王阳, 邹存磊, 赵亚军, 王增睿, 姜薇薇, 董晨希, 董闯. 基于团簇式的316不锈钢成分优化及其实验验证[J]. 材料研究学报, 2025, 39(3): 207-216.
[4] 张慧芳, 吴浩, 肖传民, 李奇, 谢君, 李金国, 王振江, 于金江. 热处理对一种 γʹ 沉淀强化钴基高温合金拉伸性能的影响[J]. 材料研究学报, 2025, 39(3): 198-206.
[5] 胡明, 张新全, 李伟强, 杨晓康, 黄金湖, 雷晓飞, 邱建科, 董利民. FeCu的含量对TC10钛合金棒材力学性能的影响[J]. 材料研究学报, 2025, 39(3): 217-224.
[6] 于兴福, 西克宇, 张宏伟, 王全振, 郝天赐, 郑冬月, 苏勇. 离子渗氮后的扩散处理对7Cr7Mo2V2Si冷作模具钢性能的影响[J]. 材料研究学报, 2025, 39(3): 225-232.
[7] 胡彭钦, 王栋, 卢玉章, 张健. 热工艺对一种镍基单晶高温合金蠕变性能的影响[J]. 材料研究学报, 2025, 39(3): 161-171.
[8] 钟伟杰, 焦东玲, 刘仲武, 刘娜, 许文勇, 李周, 张国庆. 热等静压态镍基高温合金的高温氧化[J]. 材料研究学报, 2025, 39(3): 172-184.
[9] 胥聪敏, 李雪丽, 付安庆, 孙姝雯, 陈志强, 李城臣. 复配杀菌缓蚀剂对N80钢在SRB环境中微生物腐蚀行为的影响[J]. 材料研究学报, 2025, 39(2): 145-152.
[10] 吴晓祺, 万红江, 明洪亮, 王俭秋, 柯伟, 韩恩厚. 原位小冲头压缩速率对X65管线钢氢脆敏感性的影响[J]. 材料研究学报, 2025, 39(2): 92-102.
[11] 马修戈, 吴庆辉, 庞建超, 刘增乾, 李守新, 骆凯伦, 张哲峰. 晶界取向差对双晶高温合金常温和高温拉伸性能的影响[J]. 材料研究学报, 2025, 39(2): 81-91.
[12] 袁鸿渊, 张思倩, 王栋, 张英建, 马力, 于明涵, 张浩宇, 周舸, 陈立佳. 长时热暴露对一种热障涂层/DZ411镍基高温合金体系界面组织演变的影响[J]. 材料研究学报, 2025, 39(2): 113-125.
[13] 牟春浩, 陈文革, 余田亮, 马江江. 红装TA2/Q345复合管扩散焊接头的性能[J]. 材料研究学报, 2025, 39(1): 35-43.
[14] 徐展源, 赵伟, 史湘石, 张振宇, 王中钢, 韩勇, 范景莲. 成分调节对软磁MnZn铁氧体结构和磁性的影响[J]. 材料研究学报, 2025, 39(1): 55-62.
[15] 邓小龙, 王山山, 戴鑫鑫, 刘义, 黄金昭. 非晶态FeOOH修饰的CoFeAl层状双氢氧化物异质结构的制备和对碱性溶液的全解水性能[J]. 材料研究学报, 2025, 39(1): 71-80.