Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (6): 437-445    DOI: 10.11901/1005.3093.2023.291
  研究论文 本期目录 | 过刊浏览 |
高温氦离子辐照对钨表面形貌的影响
崔运秋, 牛春杰, 吕建骅, 倪维元, 刘东平, 鲁娜()
大连理工大学电气工程学院 大连 116024
Effect of Helium Ions Irradiation at High Temperature on Surface Morphology of Tungsten
CUI Yunqiu, NIU Chunjie, LV Jianhua, NI Weiyuan, LIU Dongping, LU Na()
School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

崔运秋, 牛春杰, 吕建骅, 倪维元, 刘东平, 鲁娜. 高温氦离子辐照对钨表面形貌的影响[J]. 材料研究学报, 2024, 38(6): 437-445.
Yunqiu CUI, Chunjie NIU, Jianhua LV, Weiyuan NI, Dongping LIU, Na LU. Effect of Helium Ions Irradiation at High Temperature on Surface Morphology of Tungsten[J]. Chinese Journal of Materials Research, 2024, 38(6): 437-445.

全文: PDF(16325 KB)   HTML
摘要: 

用He离子在高于2000 K的温度辐照高纯钨样品,研究了辐照参数对W表面形貌的影响。结果表明,在2300 K辐照后W样品的表面出现明显的氦泡生长引起的表面肿胀。随着氦离子剂量的提高氦泡破裂并产生表面孔洞,表面肿胀逐渐发展成交联的类似珊瑚状的钨丝状结构;随着离子能量的增大氦离子注入W样品的深度增大,促进了表面钨丝状结构的生长。辐照温度从2100 K提高到2400 K,表面自间隙钨原子的扩散增强,抑制了表面肿胀和钨丝状结构的生长,甚至使钨丝状结构退化。氦离子剂量和离子能量的增加都促进高温氦离子辐照后W材料表面钨丝状结构的产生和演变,而提高温度的影响则与其相反。

关键词 金属材料高温氦离子辐照表面形貌    
Abstract

Tungsten (W) is considered as one of the most promising plasma facing materials for fusion devices due to its excellent properties such as high melting point, high thermal conductivity, high sputtering threshold and low hydrogen isotope retention. In this study, high-purity tungsten blocks are irradiated by helium (He) ions at temperatures > 2000 K, and the effect of changes in irradiation parameters on the evolution of the W surface morphology is investigated. The results show that at 2300 K, the surface of the W samples shows a significant swelling morphology due to the growth of helium bubbles. As the ion fluence increases, the helium bubbles rupture, accompanied by the appearance of surface holes, and further surface swelling gradually develops into cross-linked coral-like tungsten nanofilament structures; With the increase of ion energy, the depth of helium ions injected into the W material increases, which promotes the growth of surface tungsten filament-like structures. When the temperature is changed from 2100 K to 2400 K, the temperature increase enhances the rapid diffusion of self-interstitial tungsten atoms on the surface, which leads to the suppression of the surface swelling and tungsten filament-like structure growth behavior, and even the degradation of the tungsten filament-like structure. The increase in both helium ion fluence and ion energy promotes the formation and evolution of tungsten filament-like structures on the surface of W materials after high-temperature He ion irradiation in the adopted range of experimental parameters, while the increase in temperature shows the opposite trend.

Key wordsmetallic materials    tungsten    high temperature    He ions irradiation    surface morphology
收稿日期: 2023-06-12     
ZTFLH:  TG430.4  
基金资助:国家重点研发计划(2017YFE0300106);中央高校基本科研经费(DUT20JC20);大连市科技之星项目(2020RQ136);中央指导辽宁省地方科技发展基金(2022010055-JH6/1001);中央高校基本科研经费(DUT21RC(3)066)
通讯作者: 鲁娜,教授,luna@dlut.edu.cn,研究方向为等离子与材料相互作用
Corresponding author: LU Na, Tel: 15504256218, E-mail: luna@dlut.edu.cn
作者简介: 崔运秋,女,1994年生,博士生
图1  射频ICP离子源系统示意图
No.RF power / kWIon flux / m-2·sIon energy / eVIon fluence / m-2Irradiation time / sSurface temperature / KGas
1301.3 × 1023304.0 × 1024312300He
2301.3 × 1023301.0 × 1025772300He
3301.3 × 1023303.0 × 10252312300He
4301.3 × 1023305.0 × 10253852300He
5301.3 × 1023301.0 × 10267702300He
621.47.4 × 1022801.0 × 10251202300He
721.47.4 × 1022803.0 × 10253762300He
821.47.4 × 1022805.0 × 10256902300He
921.47.4 × 1022807.0 × 10259522300He
1021.47.4 × 1022801.0 × 102613602300He
1121.47.4 × 1022802.0 × 102627192300He
12205.1 × 1022801.0 × 10252102100He
1320.65.8 × 10221201.0 × 10251802300He
14291.2 × 1023801.0 × 1025952400He
15291.2 × 1023803.0 × 10252502400He
16291.2 × 1023805.0 × 10254202400He
17291.2 × 1023801.0 × 10267202400He
18301.3 × 1023301.0 × 10267702300H2
19267.7 × 1022801.0 × 102612782300H2
表1  He离子辐照实验的主要参数
图2  不同 He 离子剂量辐照后W样品表面的 SEM 照片
图3  离子剂量为4.0 × 1024 /m2时W样品表面氦泡的半径分布、对直方图的高斯拟合结果以及氦泡平均半径和数量密度与离子剂量的关系
图4  不同 He 离子能量辐照后W样品表面的SEM照片
图5  不同He离子剂量辐照后W样品表面的SEM照片
图6  不同温度He离子辐照后W样品表面的SEM照片
图7  不同He离子剂量辐照后W样品表面的SEM照片
图8  氢离子辐照后W样品表面的SEM照片
图9  W样品的质量损失与He离子剂量和He离子能量的关系
Ion energy / eVIon fluence / m-2Mass loss / g·m-2Ys
301.0 × 1025 /m21.545.0 × 10-4
801.0 × 1025 /m21.696.2 × 10-4
1201.0 × 1025 /m22.678.4 × 10-4
表2  不同 He 离子能量辐照后 W 样品的溅射率
1 Wu C H, Alessandrini C, Bonal J P, et al. Progress of the European R&D on plasma-wall interactions, neutron effects and tritium removal in ITER plasma facing materials [J]. Fusion Eng. Des., 2001, 56-57: 179
2 Behrisch R, Federici G, Kukushkin A, et al. Material erosion at the vessel walls of future fusion devices [J]. J. Nucl. Mater., 2003, 313-316: 388
3 Pitts R A, Carpentier S, Escourbiac F, et al. Physics basis and design of the ITER plasma-facing components [J]. J. Nucl. Mater., 2011, 415(suppl.1) : S957
4 Neu R, Rohde V, Geier A, et al. Plasma operation with tungsten tiles at the central column of ASDEX Upgrade [J]. J. Nucl. Mater., 2001, 290-293: 206
5 De Temmerman G, Bystrov K, Doerner R P, et al. Helium effects on tungsten under fusion-relevant plasma loading conditions [J]. J. Nucl. Mater., 2013, 438 suppl: S78
6 Parish C M, Hijazi H, Meyer H M, et al. Effect of tungsten crystallographic orientation on He-ion-induced surface morphology changes [J]. Acta Mater., 2014, 62: 173
7 Meyer F W, Hijazi H, Bannister M E, et al. He-ion and self-atom induced damage and surface-morphology changes of a hot W target [J]. Phys. Scr., 2014, T159: 014029
8 Ueda Y, Peng H Y, Lee H T, et al. Helium effects on tungsten surface morphology and deuterium retention [J]. J. Nucl. Mater., 2013, 442(suppl.1-suppl.3) : S267
9 Gasparyan Y, Efimov V, Bystrov K. Helium concentration measurement in tungsten fuzz-like nanostructures by means of thermal desorption spectroscopy [J]. Nucl. Fusion, 2016, 56(5): 054002
10 Kajita S, Sakaguchi W, Ohno N, et al. Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions [J]. Nucl. Fusion, 2009, 49: 095005
11 Kajita S, Yoshida N, Yoshihara R, et al. TEM observation of the growth process of helium nanobubbles on tungsten: nanostructure formation mechanism [J]. J. Nucl. Mater., 2011, 418: 152
12 Baldwin M J, Doerner R P. Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions [J]. Nucl. Fusion, 2008, 48(3): 035001
13 Baldwin M J, Lynch T C, Doerner R P, et al. Nanostructure formation on tungsten exposed to low-pressure rf helium plasmas: a study of ion energy threshold and early stage growth [J]. J. Nucl. Mater., 2011, 415(suppl.1) : S104
14 De Temmerman G, Bystrov K, Zielinski J J, et al. Nanostructuring of molybdenum and tungsten surfaces by low-energy helium ions [J]. J. Vac. Sci. Technol., 2012, 30A: 041306
15 Wright G M, Brunner D, Baldwin M J, et al. Comparison of tungsten nano-tendrils grown in Alcator C-Mod and linear plasma devices [J]. J. Nucl. Mater., 2013, 438 suppl: S84
16 Hammond K D. Helium, hydrogen, and fuzz in plasma-facing materials [J]. Mater. Res. Express, 2017, 4(10): 104002
17 Liu L. Research on tungsten material irradiation damage induced by low-energy and high-flux hydrogen/helium ions [D]. Dalian: Dalian University of Technology, 2019
17 刘 璐. 低能强流氢氦离子辐照下钨材料损伤研究 [D]. 大连: 大连理工大学, 2019
18 Woller K B, Whyte D G, Wright G M. Impact of helium ion energy modulation on tungsten surface morphology and nano-tendril growth [J]. Nucl. Fusion, 2017, 57(6): 066005
19 Nishijima D, Ye M Y, Ohno N, et al. Formation mechanism of bubbles and holes on tungsten surface with low-energy and high-flux helium plasma irradiation in NAGDIS-II [J]. J. Nucl. Mater., 2004, 329-333: 1029
20 Cipiti B B, Kulcinski G L. Helium and deuterium implantation in tungsten at elevated temperatures [J]. J. Nucl. Mater., 2005, 347(3): 298
21 Liu L, Liu D P, Hong Y, et al. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions [J]. J. Nucl. Mater., 2016, 471: 1
22 Cui Y Q, Fan H Y, Niu C J, et al. Stress-driven surface swell and exfoliation of copper as the plasma-facing materials in NBI ICP source [J]. Plasma Phys. Control. Fusion, 2021, 64(1): 015002
23 Zhang Y, Li X P, Niu C J, et al. W nano-fuzz growth by high-flux He ion irradiation with their energy above 300 eV [J]. Nucl. Instrum. Methods Phys. Sec. B: Beam Interact. Mater. Atoms, 2022, 520: 22
24 Niu C J, Zhang Y, Cui Y Q, et al. Effect of temperature on the growth and surface bursting of He nano-bubbles in W under fusion-relevant He ion irradiations [J]. Fusion Eng. Des., 2021, 163: 112159
25 Zhao J T, Meng X, Guan X C, et al. Investigation of hydrogen bubbles behavior in tungsten by high-flux hydrogen implantation [J]. J. Nucl. Mater., 2018, 503: 198
26 Li Y P, Ran G, Liu X Y, et al. In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing [J]. Chin. Phys. B, 2021, 30(8): 086109
27 Alimov V K, Tyburska-Püschel B, Hatano Y, et al. The effect of displacement damage on deuterium retention in ITER-grade tungsten exposed to low-energy, high-flux pure and helium-seeded deuterium plasmas [J]. J. Nucl. Mater., 2012, 420: 370
28 Roszell J P T. The effect of ion energy and substrate temperature on deuterium trapping in tungsten [D]. Toronto: University of Toronto, 2012
29 Qu S L. Research on micro-nano scale damage on tungsten surface under helium irradiation [D]. Beijing: Tsinghua University, 2018
29 曲世联. 氦辐照条件下钨材料表面微纳尺度的损伤研究 [D]. 北京: 清华大学, 2018
30 Dechaumphai E, Barton J L, Tesmer J R, et al. Near-surface thermal characterization of plasma facing components using the 3-omega method [J]. J. Nucl. Mater., 2014, 455(1-3): 56
31 Armstrong D E J, Edmondson P D, Roberts S G. Effects of sequential tungsten and helium ion implantation on nano-indentation hardness of tungsten [J]. Appl. Phys. Lett., 2013, 102(25): 251901
32 Cui S, Simmonds M, Qin W J, et al. Thermal conductivity reduction of tungsten plasma facing material due to helium plasma irradiation in PISCES using the improved 3-omega method [J]. J. Nucl. Mater., 2017, 486: 267
33 Miyazawa T, Hwang T, Tsuchida K, et al. Effects of helium on mechanical properties of tungsten for fusion applications [J]. Nucl. Mater. Energy, 2018, 15: 154
34 Hu R H, Yang Z, Lei Q J, et al. Effect of helium ions irradiation on stability of nano-tungsten whiskers [J]. Chin. J. Mater. Res., 2022, 36(11): 850
doi: 10.11901/1005.3093.2021.622
34 胡瑞航, 杨 贞, 雷齐俊 等. 氦离子辐照对钨纳米丝稳定性的影响 [J]. 材料研究学报, 2022, 36(11): 850
doi: 10.11901/1005.3093.2021.622
35 Fan H Y, Niu C J, LI X P, et al. W fuzz layers: very high resistance to sputtering under fusion-relevant He+ irradiations [J]. Plasma Sci. Technol., 2022, 24(1): 015601
[1] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.
[2] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[3] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
[4] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
[5] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[6] 王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
[7] 徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
[8] 王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.
[9] 伍英明, 姜科达, 刘胜胆, 范世通, 覃秋慧, 李俊. lnZ 条件下6013铝合金的热压缩变形行为[J]. 材料研究学报, 2024, 38(5): 337-346.
[10] 刘加晓, 胡晓, 丁桦. 时效处理对Fe-12Mn-8Al-1C-3Cu轻质钢的组织演变和力学性能的影响[J]. 材料研究学报, 2024, 38(5): 356-364.
[11] 李若浩, 胡霄雨, 王中成, 李浩, 杨勇, 徐乐, 梁恩溥, 何肖飞. 新型二次硬化钢25CrMo3NiTiVNbZr的高温力学性能和强化机理[J]. 材料研究学报, 2024, 38(5): 390-400.
[12] 田淞文, 刘丽荣, 田素贵. 一种含Re/Ru镍基单晶合金的蠕变行为及其机理[J]. 材料研究学报, 2024, 38(4): 248-256.
[13] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[14] 王玉钊, 蒋中华, 贾春妮, 张玉妥, 王培. 等温淬火对纳米贝氏体钢的组织和力学性能的影响[J]. 材料研究学报, 2024, 38(4): 279-287.
[15] 吴厚燃, 段体岗, 马力, 邵刚勤, 张恒宇, 张海兵. 铝空气电池Al-Zn-In-Mg-Ga-Mn合金阳极的电化学性能[J]. 材料研究学报, 2024, 38(4): 257-268.