Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (7): 543-551    DOI: 10.11901/1005.3093.2018.650
  研究论文 本期目录 | 过刊浏览 |
Ti6Al4V钛合金渗碳层在HF中的腐蚀行为
李坤茂1,刘静2(),张晓燕1,李宏2,代燕2
1. 贵州大学材料与冶金学院 贵阳 550003
2. 贵州师范大学材料与建筑工程学院 贵阳 550025
Corrosion Behavior of Carburized Ti6Al4V Ti-alloy in HF Solution
Kunmao Li1,Jing LIU2(),Xiaoyan ZHANG1,Hong LI2,Yan DAI2
1. College of Materials and Metallurgy, Guizhou University, Guiyang 550003, China
2. School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
引用本文:

李坤茂,刘静,张晓燕,李宏,代燕. Ti6Al4V钛合金渗碳层在HF中的腐蚀行为[J]. 材料研究学报, 2019, 33(7): 543-551.
Kunmao Li, Jing LIU, Xiaoyan ZHANG, Hong LI, Yan DAI. Corrosion Behavior of Carburized Ti6Al4V Ti-alloy in HF Solution[J]. Chinese Journal of Materials Research, 2019, 33(7): 543-551.

全文: PDF(12445 KB)   HTML
摘要: 

用真空感应渗碳方法对Ti6Al4V钛合金进行高速渗碳,研究了渗碳层在HF溶液中的腐蚀行为。对腐蚀前后渗碳层的相结构和形貌的分析发现:对Ti6Al4V钛合金高速渗碳后,在表面生成一层TiC和CTi0.42V1.58复合化合物相的渗碳层。因为表面有渗碳层,Ti6Al4V钛合金在浓度为0.2%的HF中?泡其腐蚀速率从4.65×10-10 g·m-2·h-1降低到3.3×10-10 g·m-2·h-1。电化学腐蚀测试结果表明,其自腐蚀电位从未渗碳时的-0.94 V升高到-0.68 V,腐蚀电流密度从4.10 mA·cm-2降至1.65 mA·cm-2,极化电阻从6.36 Ω·cm2增大到15.8 Ω·cm2,Rt从0.2 Ω·cm2增大到5.7 Ω·cm2。渗碳层具有n型半导体特性,未渗碳样品具有p型半导体特性。Ti6Al4V钛合金渗碳后,在腐蚀过程中电子转移的阻力增大,使耐蚀性提高。F-对Ti6Al4V钛合金渗碳层的腐蚀机理,主要是析氢腐蚀。

关键词 材料表面与界面渗碳感应加热Ti6Al4V组织腐蚀行为    
Abstract

The rapid carburization of Ti6Al4V titanium alloy was carried out by vacuum induction carburizing method. The corrosion behavior of carburized Ti-alloy in HF solution was investigated. Results show that after rapid carburization a layer of TiC and CTi0.42V1.58 composite compound was formed on the surface of T-alloy, and in comparison with the blank Ti-alloy, the corrosion rate in 0.2% HF solution decreases from 4.65×10-10 g·m-2·h-1 to 3.3×10-10 g·m-2·h-1 for the carburized Ti-alloy. Correspondingly, the free-corrosion potential increased from -0.94 V to -0.68 V, the corrosion current density decreased from 4.10 mA·cm-2 to 1.65 mA·cm-2, the polarization resistance increases from 6.36 Ω·cm2 to 15.8 Ω·cm2 and Rt increases from 0.2 Ω·cm2 to 5.7 Ω·cm2. The corrosion product of carburized layer mainly exhibits n-type semiconductor characteristics, and that of the blank Ti-alloy exhibits p-type semiconductor characteristics. The corrosion mechanism of F- on the carburized layer of Ti6Al4V Ti-alloy is mainly hydrogen evolution corrosion.

Key wordssurface and interface    carburizing    induction heating    Ti6Al4V    microstructure    corrosion behavior
收稿日期: 2018-11-12     
ZTFLH:  TG178  
基金资助:国家科学自然基金(51574096);国家科学自然基金(51464008);贵州省优秀青年科技人才培养项目([2016]5607)
作者简介: 李坤茂,男,1994年生,硕士生
图1  Ti6Al4V合金的感应渗碳工艺
SampleEcorr/VIcorr/mA·cm-2Rp/Ω·cm2V/g·m-2·h-1βa/mVβc/mV
Original sample1-0.953.986.184.65×10-1010 067 681.0
2-0.944.106.3610 802.2
3-0.914.55.71
850℃1-0.743.517.433.93×10-10721.4584.6
2-0.733.487.50
3-0.733.756.95
1-7.022.928.933.82×10-1029906312.06610.3
880℃2-0.692.719.64
3-0.692.879.11
1-0.681.3519.303.3×10-10534.1
910℃2-0.681.6515.802076667264.0
3-0.701.7115.20
表1  极化曲线的Tafel拟合参数
图2  质量损失与时间的关系
图3  不同状态Ti6Al4V钛合金的极化曲线
图4  不同状态Ti6Al4V钛合金的阻抗谱和等效电路
Sample

L

/10-7H·cm2

Rs

/Ω·cm2

CPE1Rf/Ω·cm2CPE2

Rt

/Ω·cm2

X2·10-4

Y0

-1·cm-2·S-n

n1

Y0

-1·cm-2·S-n

n1
Original sample5.95.31.3×10-410.22×10-210.21.4
850℃7.66.23.1×10-211.11.4×10-20.90.51.7
880℃8.25.51.8×10-20.82.49×10-318.22.3
910℃7.24.94.2×10-3123.61.6×10-20.75.72.0
表2  EIS曲线的拟合结果
图5  不同状态Ti6Al4V钛合金的Mott-Schottky曲线
SamplePotential range/VFlatband potential/VDonor density/Acceptor density
Original sample0~0.4-0.742.32×1032 cm-3
0.4~11.802.22×1030 cm-3
850℃0~0.4-0.082.48×1030 cm-3
0.4~1-0.351.81×1030 cm-3
880℃0~0.4-0.183.87×1030 cm-3
0.4~10.350.51×1030 cm-3
910℃0~0.4-0.328.26×1030 cm-3
0.4~10.380.30×1030 cm-3
表3  钝化膜施主密度或受主密度的拟合结果
图6  不同状态Ti6Al4V钛合金XRD图谱
图7  不同状态Ti6Al4V钛合金的截面组织
图8  表面腐蚀形貌和EDS成分分析
[1] Riccardo G, Alessandro V, Frencesco D, et al. Dental implants inserted in native bone: Cases series analyses [J]. Dental Research Journal, 2012, 9(Suppl 2): S175
[2] Wang D L, Xu J W, Yu J D. Application of titanium in prosthodontics [J]. Rare metal materials and engineering, 1993, (3): 61
[2] (汪大林, 徐君伍, 于家斗. 钛在口腔修复医学中的应用 [J]. 稀有金属材料与工程, 1993, (3): 61)
[3] Reclaru L, Meyer J M. Effects of fluorides on titanium and other dental alloys in dentistry [J]. Biomaterials, 1998, 19(1-3): 85
[4] Nakagawa M, Matsuya S, Udoh K. Corrosion behavior of pure titanium and titanium alloys in fluoride-containing solutions. [J]. Dental Materials Journal, 2001, 20(4): 305
[5] Shim H M, Oh K T, Woo J Y, et al. Corrosion resistance of titanium-silver alloys in an artificial saliva containing fluoride ions [J]. 2005, 73B(2): 252
[6] Kumar, Satendra, Narayanan S, et al. Influence of fluoride ion on the electrochemical behaviour of β-Ti alloy for dental implant application [J]. Corrosion Science, 2010, 52(5): 1721
[7] Wang Z B, Hu H X, Liu C B, et al. The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05 M sulfuric acid [J]. Electrochimica Acta, 2014, 135(22): 526
[8] Stancheva M, Bojinov M. Influence of fluoride content on the barrier layer formation and titanium dissolution in ethylene glycol-water electrolytes [J]. Electrochimica Acta, 2012, 78(9): 65
[9] Mabilleau G, Bourdon S, Jolyguillou M L, et al. Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium. [J]. Acta Biomaterialia, 2006, 2(1): 121
[10] Grotberg J, Hamlekhan A, Butt A, et al. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V [J]. Mater Sci Eng C Mater Biol Appl, 2016, 59: 677
[11] Jamesh M, Kumar S, Narayanan T S N S, et al. Effect of thermal oxidation on the corrosion resistance of Ti6Al4V alloy in hydrochloric and nitric acid medium [J]. Materials & Corrosion, 2014, 64(10): 902
[12] Jiang H. Enhancement of titanium alloy corrosion resistance via anodic oxidation treatment [J]. International Journal of Electrochemical Science, 2018, 13(4): 3888
[13] Hee A C, Jamali S S, Bendavid A, et al. Corrosion behaviour and adhesion properties of sputtered tantalum coating on Ti6Al4V substrate [J]. Surface & Coatings Technology, 2016, 307: 666
[14] Rahmati B, Sarhan A A D, Basirun W J, et al. Ceramic tantalum oxide thin film coating to enhance the corrosion and wear characteristics of Ti, 6Al, 4V alloy [J]. Journal of Alloys & Compounds, 2016, 676: 369
[15] Baloyi N M, Popoola A P I, Pityana S L. Microstructure, hardness and corrosion properties of laser processed Ti6Al4V-based composites [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(09): 2912
[16] Yildiz F, Yetim A F, Alsaran A, et al. Plasma nitriding behavior of Ti6Al4V orthopedic alloy [J]. Surface & Coatings Technology, 2008, 202(11): 2471
[17] Liao C J, He Y H, Ming X Z. Effects of Al contents on carburization behavior and corrosion resistance of TiAl alloys [J]. Journal of Materials Engineering & Performance, 2015, 24(10): 1
[18] Bailey R, Sun Y. Corrosion and tribocorrosion performance of pack-carburized commercially pure titanium with limited oxygen diffusion in a 0.9% NaCl solution [J]. Journal of Bio- and Tribo-Corrosion, 2018, 4(1): 6
[19] Yan Z B, Liu J, Yang F, et al. Rapid induction nitriding strengthening of 20CrMnTi steel [J]. Transactions of Materials and Heat Treatment, 2018, 39(08): 129
[19] (颜志斌, 刘 静, 杨 峰等. 20CrMnTi钢快速感应渗氮强化 [J]. 材料热处理学报, 2018, 39(08): 129)
[20] Feng Z G, Zheng J B, Liu J. Effect of nitriding temperature on wear resistance of vacuum induction nitriding layer of 38CrMoAl steel [J]. Transactions of Materials and Heat Treatment, 2017, 38(10): 100
[20] (冯治国, 郑纪豹, 刘 静. 渗氮温度对38CrMoAl钢真空感应渗氮层耐磨性能的影响 [J]. 材料热处理学报, 2017, 38(10): 100)
[21] Liu J, Zheng J B, Feng Z G, et al. A double pulse rapid nitriding device based on induction heating [P]. Chinese patent: CN206680563U, 2017-11-28
[21] (刘 静, 郑纪豹, 冯志国. 一种基于感应加热的双脉冲快速渗氮装置 [P]. 中国专利: CN206680563U, 2017-11-28)
[22] Fazel M, Salimijazi H R, Golozar M A, et al. A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process [J]. Applied Surface Science, 2015, 324: 751
[23] Schmidt A M, Azambuja D S. Corrosion Behavior of Ti and TI6Al4V in Citrate Buffers Containing Fluoride [J]. Materials Research, 2010, 13(1): 45
[24] Moutarlier V, Gigandet M P, Normand B, et al. EIS characterisation of anodic films formed on 2024 aluminium alloy, in sulphuric acid containing molybdate or permanganate species [J]. Corrosion Science, 2005, 47(4): 937
[25] Liao C, Yang J, He Y, et al. Electrochemical corrosion behavior of the carburized porous TiAl alloy [J]. Journal of Alloys & Compounds, 2015, 619: 221
[26] Jiang Y L, Mu Y S. The ac impedance spectrum of titanium alloy TC4 in 3%NaCl solution after plastic deformation [J], Journal of University of Science and Technology Beijing, 2004, (06): 616
[26] (姜应律, 吴荫顺. 钛合金TC4塑性变形后在3%NaCl溶液中的交流阻抗谱 [J]. 北京科技大学学报, 2004, (06): 616)
[27] Qin B, Li S Y, Fan H Q, et al. Semiconductor characteristics and corrosion behavior of anodic oxidation film [J]. Materials Protection, 2011, 44(10): 8
[27] (钱 备, 李淑英, 范洪强等. 钛阳极氧化膜的半导体特性及腐蚀行为 [J]. 材料保护, 2011, 44(10): 8)
[28] Guo H X, Lu B T, Luo J L. Study on passivation and erosion-enhanced corrosion resistance by Mott-Schottky analysis [J]. Electrochimica Acta, 2006, 52(3): 1108
[29] Woldemedhin M T, Raabe D, Hassel A W. Characterization of thin anodic oxides of Ti-Nb alloys by electrochemical impedance spectroscopy [J]. Electrochimica Acta, 2012, 82(21): 324
[30] Li N, Li Y, Wang S, et al. Electrochemical corrosion behavior of nanocrystallized bulk 304 stainless steel [J]. Electrochimica Acta, 2007, 52(3): 760
[31] Marsh J, Gorse D. A photoelectrochemical and ac, impedance study of anodic titanium oxide films [J]. Electrochimica Acta, 1998, 43(7): 659
[32] Xing Y Z, Jiang C P, Hao J M. Time dependence of microstructure and hardness in plasma carbonized Ti-6Al-4V alloys [J]. Vacuum, 2013, 95(9): 12
[33] Cheng L, Liu Z, Yin G. Theoretical research on influences of non-metal elements on the phase transition temperature of commercial pure titanium [J]. Rare Metal Materials & Engineering, 2008, 37(4): 571
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[3] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[4] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[5] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[6] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[10] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[11] 李桥, 牛犇, 张瑞谦, 刘会群, 林国强, 王清. Ta/ZrFe-Cr-Al-Mo-Nb合金温轧板材高温组织稳定性的影响[J]. 材料研究学报, 2023, 37(6): 423-431.
[12] 夏博, 王斌, 张鹏, 李小武, 张哲峰. 回火温度对高强弹簧钢微观组织和冲击性能的影响[J]. 材料研究学报, 2023, 37(5): 341-352.
[13] 张帅杰, 吴谦, 陈志堂, 郑滨松, 张磊, 徐翩. MnMg-Y-Cu合金的组织和性能的影响[J]. 材料研究学报, 2023, 37(5): 362-370.
[14] 张瑞雪, 马英杰, 贾焱迪, 黄森森, 雷家峰, 邱建科, 王平, 杨锐. 亚稳 β 钛合金热处理显微组织演变和元素再分配行为[J]. 材料研究学报, 2023, 37(3): 161-167.
[15] 董宇昂, 阳华杰, 贲丹丹, 马云瑞, 周相海, 王斌, 张鹏, 张哲峰. 液氮电脉冲处理超细晶316L不锈钢的低温拉伸性能[J]. 材料研究学报, 2023, 37(3): 168-174.