Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (9): 703-713    DOI: 10.11901/1005.3093.2016.577
  研究论文 本期目录 | 过刊浏览 |
基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证
刘庆生(), 曾少军, 张丹城
江西理工大学冶金与化学工程学院 赣州 341000
Numerical Analysis in Mesoscopic Scale and Experimental Verification for Sodium Expansion Induced Stress of Cathode Carbon Blocks
Qingsheng LIU(), Shaojun ZENG, Dancheng ZHANG
Falculty of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
引用本文:

刘庆生, 曾少军, 张丹城. 基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证[J]. 材料研究学报, 2017, 31(9): 703-713.
Qingsheng LIU, Shaojun ZENG, Dancheng ZHANG. Numerical Analysis in Mesoscopic Scale and Experimental Verification for Sodium Expansion Induced Stress of Cathode Carbon Blocks[J]. Chinese Journal of Materials Research, 2017, 31(9): 703-713.

全文: PDF(3326 KB)   HTML
摘要: 

在细观层面上将阴极炭块视为由骨料和粘结剂组成的二相复合材料,应用蒙特卡洛方法建立二维随机骨料模型,使用ANSYS 有限元软件的热分析模块求解钠膨胀应力模型,对不同形状、级配、含量的骨料模型的钠膨胀应力进行了数值模拟。结果表明:阴极炭块细观结构的非均匀性造成钠膨胀应力的不均匀分布,特别是拉应力集中导致阴极炭块破损;级配0.003~0.015 m炭骨料钠膨胀量最小,级配0.003~0.006 m炭骨料钠膨胀量最大,骨料含量80%钠膨胀量最小,骨料含量60%钠膨胀量最大。该模型的数值模拟结果与实验结果基本相符,表明该模型描述的钠膨胀和应力分布是合理和有效的,可以作为研究阴极炭块钠膨胀应力性能的一种有效辅助手段。

关键词 材料科学基础学科钠膨胀应力模型数值模拟阴极炭块细观结构    
Abstract

The cathode carbon block was regarded as a two-phase composite material composed of aggregates and binder in mesoscopic scale, for description of which, a two-dimensional random aggregate model was established by Monte Carlo method. Then the numerical simulation of sodium expansion induced stress of aggregate model was established by the thermal analysis module of ANSYS finite element software in consideration of different shapes, gradations and contents of the aggregate. The results show that the nonuniformity of the meso-structure in the cathode carbon block causes the nonuniform distribution of the stress induced by the sodium expansion. Particularly, the presence of the tensile stress can lead to the damage of the cathode carbon block. The sodium expansion of the carbon blocks with the carbon aggregate within the gradation of 0.003-0.015 m is the lowest, while those within the gradation of 0.003-0.006 m is the highest. The sodium expansion of the carbon block with 80% carbon aggregate is the lowest, while that with 60% carbon aggregate is the highest. The numerical simulation results are in accordance with the experimental results,which means that this model can reasonably and effectively describe the sodium expansion and stress distribution of the carbon block. Thus it can be used as an effective auxiliary way to study phenomena related with the sodium expansion induced stress.

Key wordsfoundation discipline in materials science    model of sodium expansion stress    numerical stress    numerical simulation    cathode carbon block    meso-structure
收稿日期: 2016-09-30     
ZTFLH:  TF821  
基金资助:国家自然科学基金(51264011, 51564019)
作者简介:

作者简介 刘庆生,男,1975年生,副教授,博士

Number Shape Filling ratio Diameter of grading
1 circle 60% 0.003~0.009 m
2 circle 70% 0.003~0.006 m
3 circle 70% 0.003~0.009 m
4 circle 70% 0.003~0.015 m
5 circle 80% 0.003~0.009 m
6 ellipse 70% 0.003~0.009 m
7 polygon 70% 0.003~0.009 m
表1  不同骨料模型的控制参数
图1  模型2有限元网格划分
图2  初始边界条件示意图
Aggregate Binder
Density (kg/m3) 1940 1200
Modulus of elasticity (GPa) 9 6
Poisson's ratio 0.32 0.28
Diffusion coefficient of
sodium (mm2/s)
8.9×10-3 9.7×10-2
表2  阴极炭块材料参数
Sodium concentration /%, mass fraction 1 2 3
Aggregate (10-5) 0.65 1.3 1.95
Binder (10-5) 1.09 2.18 3.28
表3  钠膨胀系数
图3  单个骨料的膨胀应力分布图
图4  不同形状骨料模型的钠浓度分布3600 s
图5  不同形状骨料模型Y方向的膨胀位移10800 s
图6  不同形状骨料模型X方向的应力分布10800 s
图7  不同形状骨料模型Y方向的应力分布10800 s
图8  不同形状骨料模型的膨胀位移和应力曲线
图9  不同级配骨料模型的钠浓度分布3600 s
图10  不同级配骨料模型Y方向的膨胀位移10800 s
图11  不同级配骨料模型X方向的应力分布10800 s
图12  不同级配骨料模型Y方向的应力分布10800 s
图13  不同级配骨料模型的膨胀位移和应力曲线
图14  不同含量骨料模型的钠浓度分布3600 s
图15  不同含量骨料模型Y方向的膨胀位移10800 s
图16  不同含量骨料模型X方向的应力分布10800 s
图17  不同含量骨料模型Y方向的应力分布10800 s
图18  不同含量骨料模型的膨胀位移和应力曲线
图19  钠扩散实验装置图
图20  数值模拟结果与实验结果的比较
[1] Fang Z, Zhang K.Alkali metals (K and Na) penetration and its effects on expansion of TiB2-C composite cathode during aluminum electrolysis[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 1847
[2] Sun H, Zikanov O, Finlayson B A, et al.The influence of the basic flow and interface deformation on stability of Hall-Heroult cells [A]. Kvande H. Light Metals 2005[C]. San Francisco, CA: TMS, 2005: 437
[3] Zolochevsky A, Hop J G, Foosnaes T, et al.Surface exchange of sodium, anisotropy of diffusion and diffusional creep in carbon cathode materials [A]. Kvande H. Light Metals 2005[C]. San Francisco, CA: TMS, 2005: 745
[4] Solheim A, Moxnes B P, Vamraak K, et al.Energy recovery and amperage increase in aluminium cells by active cooling of the anode yokes [A]. Beame G. Light Metals 2009[C]. Warrendale: TMS, 2009: 1091
[5] Lai Y Q, Xu J, Lv X J, et al.Effect of inorganic particles on properties of modified pitches and pitch based TiB2/C composite cathodes for aluminium electrolysis[J]. J. Central South Univ.(Sci. Technol.), 2012, 43: 2029(赖延清, 胥建, 吕晓军等. 铝电解TiB2/C复合阴极用煤沥青的无机改性[J]. 中南大学学报(自然科学版), 2012, 43: 2029)
[6] Liu Q S, Xue J L, Zhu J, et al.Effects of additives on the sodium penetration and expansion of carbon-based cathodes during aluminum electrolysis[J]. J. Univ. Sci. Technol. Beijing, 2008, 30: 403(刘庆生, 薛济来, 朱骏等. 添加剂对铝电解炭基阴极钠渗透膨胀过程的影响[J]. 北京科技大学学报, 2008, 30: 403)
[7] Stewart M G, Wang X M, Nguyen M N.Climate change impact and risks of concrete infrastructure deterioration[J]. Eng. Struct., 2011, 33: 1326
[8] Zhang H H, Zhang H L, Cui X F, et al.Impact of cathode carbon block material on the thermal-electric field in aluminum reduction cell[J]. Nonferrous Met. Eng. Res., 2011, 23(2): 13(张翮辉, 张红亮, 崔喜风等. 阴极炭块材料对铝电解槽电热场影响的研究[J]. 有色冶金设计与研究, 2011, 32(2): 13)
[9] Xu Z L.Elasticity [M]. 4th ed. Beijing: Higher Education Press, 2011(徐芝纶. 弹性力学[M]. 4版. 北京: 高等教育出版社, 2011)
[10] Song X G, Yang Z C.A new method to simulate round concrete aggregate generation[J]. Eng. Mech., 2010, 27(1): 154(宋晓刚, 杨智春. 一种新的混凝土圆形骨料投放数值模拟方法[J]. 工程力学, 2010, 27(1): 154)
[11] Liu Q S, He W, Zeng F J, et al.Damage properties of carbon cathodes under different aluminium electrolysis time[J]. J. Mater. Eng., 2013, (7): 92(刘庆生, 何文, 曾芳金等. 不同铝电解时间下阴极炭块的损伤特性研究[J]. 材料工程, 2013, (7): 92)
[12] Zolochevsky A, Hop J G, Servant G, et al.Creep and sodium expansion in a semigraphitic cathode carbon[A]. Kvande H. Light Metals 2003[C]. San Francisco, CA: TMS, 2003: 595
[13] Yan L, Yang C H, Wang C.Influence of coarse aggregates' shape index and gradation in self-compacting concrete's rheological behavior and working performance[J]. Concrete, 2011, (1): 75(严琳, 杨长辉, 王冲. 粗骨料颗粒形状指数、级配对自密实混凝土工作性能的影响[J]. 混凝土, 2011, (1): 75)
[14] Chauke L, Garbers-Craig A M. Reactivity between carbon cathode materials and electrolyte based on industrial and laboratory data[J]. Carbon, 2013, 58: 40
[15] Coulombe M A, Lebeuf M, Chartrand P, et al.Carburation phenomenons at the cathode block/metal interface [A]. Johnson J A. Light Metals 2010[C]. Warrendale, PA, USA: TMS, 2010: 811
[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[4] 杨东亚, 李伟涛, 王宏刚, 高贵, 陈生圣, 任俊芳, 田松. 对偶环粗糙度对铋青铜磨损的影响[J]. 材料研究学报, 2021, 35(10): 732-740.
[5] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[6] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[7] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[8] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[9] 刘庆生,许真铭,汤卫东. 基于细观结构的铝电解阴极炭块钠扩散过程的数值分析和实验研究[J]. 材料研究学报, 2017, 31(3): 233-240.
[10] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[11] 黄莉. 石蜡/水相变乳液的稳定性能和储能容量[J]. 材料研究学报, 2017, 31(10): 789-795.
[12] 朱良,王晶,李晓慧,锁红波,张亦良. 基于堆焊成形钛合金高周疲劳实验数据的R-S-N模型[J]. 材料研究学报, 2015, 29(9): 714-720.
[13] 陈杨,钱程,宋志棠,闵国全. 用AFM力曲线技术测定聚合物微球的压缩杨氏模量*[J]. 材料研究学报, 2014, 28(7): 509-514.
[14] 于桂琴,刘建军,梁永民. 胍盐离子液体的合成及其对钢/钢摩擦副的摩擦性能研究*[J]. 材料研究学报, 2014, 28(6): 448-454.
[15] 王效岗,李乐毅,王海澜,周存龙,黄庆学. 双金属复合板材辊式矫直的数值模型*[J]. 材料研究学报, 2014, 28(4): 308-313.