Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (4): 377-382    
  研究论文 本期目录 | 过刊浏览 |
用直流和脉冲电沉积制备Ni--Cr纳米复合镀层
张艳1, 田苗苗1, 刘蕾1, 彭晓2
1.沈阳工业大学理学院 沈阳 110023
2.中国科学院金属研究所 沈阳 110016
Preparation of Ni–Cr Nanocomposite Coatings by D. C. and Pulsed D.C. Electroplating Technique
ZHANG Yan1, TIAN Miaomiao1, LIU Lei1, PENG Xiao2
1.School of Science, Shenyang University of Technology, shenyang 110023
2.Insititute of Metal Research, Chinese Academy of Science, shenyang 110016  
引用本文:

张艳 田苗苗 刘蕾 彭晓. 用直流和脉冲电沉积制备Ni--Cr纳米复合镀层[J]. 材料研究学报, 2012, 26(4): 377-382.
. Preparation of Ni–Cr Nanocomposite Coatings by D. C. and Pulsed D.C. Electroplating Technique[J]. Chin J Mater Res, 2012, 26(4): 377-382.

全文: PDF(1035 KB)  
摘要: 应用直流、脉冲电沉积技术分别制备Ni--Cr纳米复合镀层, 研究了电沉积方式对其性能的影响。结果表明:随着镀液中Cr浓度的增大, 用两种电沉积方式制备的镀层中Cr含量均随着镀液浓度的增加而增加, 但是在镀液中Cr浓度相同的条件下脉冲纳米复合镀层的Cr含量比直流纳米复合镀层的高。在900℃氧化24 h后, 脉冲纳米镀层的抛物线速度常数低于直流镀层的2.85倍, 在含Cl离子和酸性水溶液中其耐蚀性能均优于直流方式制备的纳米复合镀层。脉冲镀层的显微硬度比直流镀层的高2倍。脉冲电沉积能降低镀层表面的浓差极化, 控制关断时间, 使晶核的形成几率增大, 晶核数量增多, 从而制备出平整、致密、细化的复合镀层。
关键词 复合材料脉冲纳米复合镀层组织性能Cr含量    
Abstract:Ni–Cr nanocomposite coatings were prepared by D. C. and pulsed D.C. electroplating technique, respectively, and the contents of Cr in the nanocomposite film was investigated. The results show that the codeposition of Cr nanoparticles in the nanocomposite coating by D.C. electroplating firstly increased with the Cr concentration in electrolyte bath, but the contents of Cr in the film prepared by pulsed D.C. electroplating are higher than those of the D.C. electroplating for the same concentration Cr in the electrolyte bath. The parabolic rate constant for the pulse nanocomposite coating is 2.85 times that of D.C. electroplating films after oxidation at 900   for 24 h, and the corrosion resistance of the pulse nanocomposite coatings is better than that of the D.C. electrodeposited films in Cl ion solution and acid solution. Meanwhile, the microhardness of the pulse nanomcoposite coatings is 2 times that of the D.C. electroplated films. The pulse electrodeposition can reduce the concentration distinction polarization on the surface of the pulse nanocomposite coatings, controll the shut off time, and increase the possibility
of nuclei formation, so the amounts of grain nuclei increase and the perfect nanocomposite coatings with finer grains and more compact structure can be obtained.
Key wordscomposite material    pulsed nanocomposite coating    microstructure    property    Cr content
收稿日期: 2012-02-11     
ZTFLH: 

TG1331

 
基金资助:

国家自然科学基金资助项目50571108和51171199资助项目。

1 S.Ranjan, D.Siddhartha, D.Karabi, Effect of stirring rate on the microstructure and microhardness of Ni–CeO2 nanocomposite coating and investigation of the corrosion property, Surface and Coatings Technology, 205, 3847(2011)

2 Y.B.Zhou, G.G.Zhao, H.J.Zhang, Fabrication and wear properties of co–deposited Ni–Cr nanocomposite coatings, Trans. Nonferrous Mct. Soc. China, 20, 104(2010)

3 A.C.Ciubotariu, L.Benea, M.L.Varsanyi, Electrochemical impedance spectroscopy and corrosion behaviour of A12O3–Ni nano composite coatings, Electrochimica Acta, 53, 4557(2008)

4 J.X.Yu, H.B.Liu, M.M.Lan, Effect of different electrodeposition methods on oxidation resistance of Ni–CeO2nanocomposite coating, Surface and Coatings Technology, 204, 3539(2010)

5 L.Benea, P.L.Bonora, Wear corrosion properties of nano–structured SiC–nickel composite coatings obtained by electroplating, Wear, 249, 995(2002)

6 X.Peng, D.Ping, T.Li, W.Wu, Oxidation behavior of a Ni–La2O3 codeposited film on nickel, J. electrochem. Soc., 145, 389(1998)

7 I.Garcia, A.Conde, G.Langelaan, Improved corrosion resistance through microstructural modifications induced by codepositing SiC–particles with electrolytic nickel, Corros. Sci., 45, 1173(2003)

8 Y.Zhang, X.Peng, F.Wang, Development and oxidation at 800oC of a novel electrodeposited Ni–Cr nanocomposite  film, Mater. Lett., 58, 1134(2004)

9 L.M.Chang, Z.M.An, Y.S.Shi, Microstructure and characterization of Ni–Co/Al2O3 composite coatings by pulse reversal electrodeposit, Applied Surface Science, 253(4), 2131(2006)

10 L.M.Chang, F.H.Guo, Z. M. An, Effect of Ce(SO4)3 on structure and properties of Ni–Co/Al2O3 composite coating deposited by pulse reverse current method, Applied Surface Science, 253(14), 6085(2007)

11 J.Steinbach, H.Nanostructureed Ni–Al2O3 films prepared by D.C. and pulsed D.C. electroplating, Scripta Mater, 44, 1813(2001)

12 D.Thiemig, A.Bund, B.Jan, Talbot influence of hydrodynamics and pulse plating parameters on the electrodeposition of nickea–alumina nanocomposite films, Electrochimica Acta, 54(9), 2491(2009)

13 B.Andrews, T.Denny, Influence of bath composition and pH on the electrocodeposition of alumina nanoparticles and nicke, Surface and Coatings Technology, 201(16–17), 7092(2007)

14 A.B.Vidrine, E.J.Podlaha, Composite electrodeposition of ultrafine γ–alumina particles in Nickel matrices Part I:citrate and chloride electrolytes, Jounral of Applied, 31, 461(2001)

15 F.Erler, C.R.Jakob, H.omanus, Interface behaviors in nickel composite coatings with nano–particles of oxidic ceramic, Electrochemica Acta, 48, 3063(2003)

169 A.Moller, H.Hahn, Synthesis and characterization of nanocrystallin Ni/ZrO2 Composite coatings, Nanostructured Materials, 12, 259(1999)

17 R.Xu, J.Wang, L.He, Study on the characteristics of Ni–W–P composite coatings containing nano–SiO2 and nano–CeO2 particles, Surface and Coatings Technology, 202, 1574(2008)

18 M.E.Bahrololoom, R.Sani, The influence of pulse plating parameters on the hardness and wear resistance of nickel alumina composite coatings, Surface and Coatings Technology,

192(3), 154(2005)

19 F.Wang, S.Arai, M.Endo, Preparation of nickel–carbon nanofiber composites by a pulse–reverse electrodeposition process, Electrochemistry Communications, 7, 674(2005)

20 L.Benea, P.L.Bonora, A.Borello, Wear corrosion properties of nano–structured SiC–nickel composite coatings obtained by electroplating, Wear, 249, 995(2001)

21 ZHANG Yan, PENG Xiao,WANG Fuhui, Effect of Cr particle contents on microstructure of the electrodeposied Ni–Cr nanocomposite, Chinese Journal Materials Research,

23(6), 587(2009)

(张 艳, 彭 晓, 王福会, Cr颗粒含量对Ni--Cr纳米复合镀层组织结构的影响, 材料研究学报,  23(6), 587(2009))

22 ZHANG Yan, TIAN Miaomiao, LI Mo, Electrochemical corrosion of nickel–based alloys with different chromium contents, Chinese Journal Materials Research, 25(6), 645(2011)

(张 艳, 田苗苗, 李 墨, 不同Cr含量的Ni基合金电化学腐蚀行为, 材料研究学报,  25(6), 645(2011))
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[5] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[6] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[7] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[8] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[9] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[10] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[11] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[12] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[13] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[14] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[15] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.