Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (1): 44-50    
  研究论文 本期目录 | 过刊浏览 |
Ca 2+和臭氧对A3碳钢表面磷化膜的影响
盛敏奇1;  王毅1;2;  钟庆东1; 林海1;  周琼宇1; 卫银银3
1.上海大学 上海市现代冶金与材料制备重点实验室 上海 200072
2.上海电力学院 能源与环境工程学院 上海 200090
3.华东师范大学化学系 上海 200062
Influence of Ca 2+ and Dissolved Ozone in Phosphating Solution on Phosphate Coating on A3 Carbon Steel
SHENG Minqi 1;  WANG Yi 1;2;   ZHONG Qingdong 1;   LIN Hai 1;    ZHOU Qiongyu 1;   WEI Yinyin3
1.Shanghai Key Laboratory of Modern Metallurgy and Material Processing; Shanghai University; Shanghai 200072
2.School of Energy Sources and Environment Engineering; Shanghai University of Electric Power; Shanghai 200090
3.Department of Chemistry; East China Normal University; Shanghai 200062
引用本文:

盛敏奇 王毅 钟庆东 林海 周琼宇 卫银银. Ca 2+和臭氧对A3碳钢表面磷化膜的影响[J]. 材料研究学报, 2010, 24(1): 44-50.
. Influence of Ca 2+ and Dissolved Ozone in Phosphating Solution on Phosphate Coating on A3 Carbon Steel[J]. Chin J Mater Res, 2010, 24(1): 44-50.

全文: PDF(1462 KB)  
摘要: 

在低温磷化条件下, 在磷化液中加入Ca 2+并以臭氧作为促进剂, 在A3碳钢表面制备了磷化膜。通过SEM、
XRD、EDS、FT--IR以及腐蚀电化学测试等手段对磷化膜进行表征, 研究了Ca 2+和臭氧对磷化膜的结构和性能的影响。结果表明, 在磷化液中添加Ca 2+所得磷化膜的质量随着Ca 2+浓度的提高而减小, 添加Ca 2+可细化磷化膜的晶粒、提高磷化膜的致密度和耐蚀性能; 溶解在磷化液中的臭氧具有细化磷化膜晶粒和促进晶粒生长的作用, 能大幅提高磷化膜晶粒的形核率和磷化膜的主体形成速度。当磷化液的pH=2.70、Ca 2+浓度为1.8 g/L、臭氧含量为2.50 mg/L时, 磷化膜的质量为5.46 g/m2, 其耐硫酸铜点滴腐蚀时间超过122 s, 在5% NaCl溶液中的腐蚀电流为0.50 μA/cm2

关键词 材料表面与界面  磷化  A3碳钢 臭氧 钙离子 腐蚀  表面处理    
Abstract

Phosphate coating on the surface of A3 carbon steel was prepared through the addition of Ca2+ and ozone as an accelerator of phosphating treatment at low temperature, and was characterized by SEM, XRD, EDS, FT-IR and corrosion electrochemical testing. The effects of Ca2+ and dissolved ozone in phosphating solution on the structure and performance of phosphate coating were investigated. The results show that the coating mass decreases with increasing the Ca2+ concentration in phosphating solution. Ca2+ can reduce the crystal size of coating and increase the density and corrosion resistance of coating. The dissolved ozone in phosphating solution can reduce the crystal size of coating and promote the growth of crystal, so the nucleation and formation rates are increased and the corrosion resistance of coating is improved. When pH=2.70, concentration of Ca2+ and ozone were 1.8 g/L and 2.50 mg/L respectively, the mass of phosphate coating was 5.46 g/m2, the corrosion-resistance time of coating with CuSO4 dripping was >122 s, and the corrosion current of phosphating sample was 0.50 μA/cm2 in 5% NaCl solution.

Key wordssurface and interface in the materials     phosphating     A3 carbon steel    ozone     calcium ion    corrosion    surface treatment
收稿日期: 2009-07-13     
基金资助:

国家自然科学基金50571059, 50615024、教育部新世纪优秀人才支持计划NCET-07-0536、教育部创新团队计划IRT0739资助项目。

1 D.B.Freeman, Phosphating Metal Pretreatment (Beijing, National Defense Industry Press, 1989) p.1
(D.B.弗里曼,  磷化与金属预处理  (北京, 国防工业出版社, 1989) p.1)
2 S.Feliu, V.Barranco, Study of degration mechanisms of a protective lacquer film formulate with phosphating reagents applied on galvanized steel, Surface and Coatings Technology, 182(2), 251(2004)
3 M.C.Deys, G.Bluxtein, R.Romagnoli, B.delAmo, The influence of the anion type on the anticorrosive behavior of inorganic phosphates, Surface and Coatings Technology, 150(3), 133(2002)
4 WANG Quanfa, LI Yan, Phosphating and lubrication for cold-forming processes, Lubrication Engineering, (4), 41(1994)
(汪泉发, 黎燕, 冷塑加工用磷化和润滑处理, 密封与润滑, (4), 41(1994))
5 K.Ravichandran, H.Sivanandh, S.Ganesh, T.Hariharasudan, T.S.N.Sankara Narayanan, Acceleration of the phosphating process-the utility of galvanic coupling, Metal Finishing, 98(9), 48(2000)
6 D.Zimmermann, A.G.Munoz, J.W.Schultze, Formation of Zn–Ni alloys in the phosphating of Zn layers, Surface and Coatings Technology, 197(2), 260(2005)
7 X.Sun, D.Susac, R.Li, K.C.Wong, T.Foster, K.A.R. Mitchell, Some observations for effects of copper on zinc phosphate conversion coatings on aluminum surfaces, Surface and Coatings Technology, 155(1), 46(2002)
8 LU Weiguo, LI Shuying, Phosphating accelerant, Surface Technology, 31(6), 12(2002)
(鲁维国, 李淑英, 磷化促进剂, 表面技术,  31(6), 12(2002))
9 LI Canquan, SUN Yaru, XU Binghui, SUN Fuming, Action of sodium citrate accelerating agent in phosphating at ambient temperature, Materials Protection, 39(8), 16(2006)
(李灿权, 孙雅茹, 徐炳辉, 孙福明, 柠檬酸钠在常温磷化中的作用, 材料保护,  39(8), 16(2006))
10 Guangyu Li, Liyuan Niu, Jianshe Lian, Zhonghao Jiang, A black phosphate coating for C1008 steel, Surface and Coatings Technology, 176(2), 215(2004)
11 Duan Weng, Rizhong Wang, Guoqing Zhang, Environmental impact of zinc phosphating in surface treatment of metals, Metal Finishing, 96(9), 54(1998)
12 P.A.Bingham, R.J.Hand, Vitrified metal finishing wastes I. Composition, density and chemical durability, Journal of Hazardous Materials, 119(1-3), 125(2005)
13 Hhiu Tsu Lin, Green chemistry in situ phosphating coatings, Progress in Organic Coatings, 42(3-4), 226(2001)
14 E.M.Derun, T.Demirozu, M.B.Piskin, S.Piskin, The analysis of corrosion performance of car bodies coated by no nickel and low nickel zinc phosphating processes, Materials and Corrosion, 56(6), 412(2005)
15 R.Andreozzim, V.Caprio, A.Insola, R.Marotta, R.Sanchirico, Advanced oxidation processes for the treatment of mineral oil-contaminated waste waters, Water Research, 34(2), 620(2000)
16 SHENG Minqi, CHEN Yepu, JIA Ruiping, FAN Haihua, Effect of ozone on phosphating film on carbon steel, Corrosion & Protection, 29(2), 76(2008)
(盛敏奇, 陈烨璞, 贾瑞平, 范海华, 臭氧对碳钢表面磷化的影响, 腐蚀与防护,  29(2), 76(2008))
17 Hui Zhang, Lijie Duan, Daobin Zhang, Absorption kinetics of ozone in water with ultrasonic radiation, Ultrasonics Sonochemistry, 14(5), 552(2007)

[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 蒋梦蕾, 代斌斌, 陈亮, 刘慧, 闵师领, 杨帆, 侯娟. 选区激光熔化成形尺寸对304L不锈钢点蚀性能的影响[J]. 材料研究学报, 2023, 37(5): 353-361.
[5] 张帅杰, 吴谦, 陈志堂, 郑滨松, 张磊, 徐翩. MnMg-Y-Cu合金的组织和性能的影响[J]. 材料研究学报, 2023, 37(5): 362-370.
[6] 杨宝磊, 刘廷光, 苏香林, 范宇, 邱亮, 陆永浩. 热老化对316LN力学性能和晶间腐蚀敏感性的影响[J]. 材料研究学报, 2023, 37(5): 381-390.
[7] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[8] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[9] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[10] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[11] 陈杰, 李红英, 周文浩, 张青学, 汤伟, 刘丹. 热输入对Q1100钢焊接接头低温韧性及耐蚀性能的影响[J]. 材料研究学报, 2022, 36(8): 617-627.
[12] 蔡雨升, 韩洪智, 任德春, 吉海宾, 雷家峰. 化学腐蚀工艺对激光选区熔化成形TC4钛合金表面粗糙度的影响[J]. 材料研究学报, 2022, 36(6): 435-442.
[13] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[14] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[15] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.