Please wait a minute...
材料研究学报  2004, Vol. 18 Issue (5): 529-536    
  论文 本期目录 | 过刊浏览 |
真空热循环对M40J/环氧复合材料力学性能的影响
高禹;杨德庄;何世禹
哈尔滨工业大学
Effect of vacuum thermo--cycling on mechanical properties of M40J/epoxy composites
;;
哈尔滨工业大学
引用本文:

高禹; 杨德庄; 何世禹 . 真空热循环对M40J/环氧复合材料力学性能的影响[J]. 材料研究学报, 2004, 18(5): 529-536.

全文: PDF(2855 KB)  
摘要: 分别测量了经不同次数单向真空热循环试验(93$\sim$413 K, 10$^{-5}$Pa) 后M40J/5228A复合材料的拉伸强度、弯曲强度和层剪强度, 研究了真空热循环对M40J/环氧复合材料力学性能的影响. 结果表明, 随着真空热循环次数的增加, 90$^{\circ}$和0$^{\circ}$拉伸强度下降, 并分别于48次和40次真空热循环后趋于平缓. 弯曲强度随着真空热循环次数的增加表现出先上升后下降再趋于平缓的特征, 而层剪强度变化不大. 90$^{\circ}$和0$^{\circ}$拉伸强度的变化与界面脱粘程度密切相关. 弯曲强度变化主要反映真空热循环时树脂基体后续固化效应的影响. 层剪强度变化 是界面脱粘与树脂基体后续固化两种因素综合作用的结果.
关键词 复合材料碳/环氧复合材料真空热循环力学    
Abstract:The vacuum thermo--cycling(93$\sim$413 K, 10$^{-5}$Pa) was performed on unidirectional M40J/5228A composites, and the 90$^{\circ}$ and 0$^{\circ}$ tensile strengths, bend strength and interlayer strength were examined after vacuum thermo-cycling for various cycles. The fracture of surfaces of the specimens was observed by SEM. The influence of vacuum thermo--cycling on the mechanical properties of the M40J/5228A composites was investigated. The results show that with increasing the thermal cycles, both the 90$^{\circ}$ and 0$^{\circ}$ tensile strengths decrease and tend to level off after the cycles of 48 and 40, respectively. The bend strength shows a trend of ascending followed by descending and leveling off, while the interlayer strength do not change a lot. The changes of the 90$^{\circ}$ and 0$^{\circ}$ tensile strengths could be related to the interface debonding. The thermo--cycling would cause additional curing of the epoxy matrix and affect the bent strength. The change in the interlayer strength depends on the combination of the interface debonding and the followed curing caused by the vacuum thermo--cycling.
Key wordscomposite    carbon/epoxy composites    vacuum thermo-cycling    mechanical properties    fractures
收稿日期: 2004-11-05     
ZTFLH:  TB332  
1 XIAO Shaobo, LIU Zhixiong, Aerospace Materials and Technology, 4, 1(1993) (肖少伯,刘志雄,宇航材料工艺,4,1(1993) )
2 LI Chundong, YANG Dezhuang, HE Shiyu, Ghinese Journal of Materials Research, 17(4) , 422(2003) (李春东,杨德庄,何世禹,材料研究学报,17(4) ,422(2003) )
3 JIANG Lixiang, HE Shiyu, YANG Dezhuang, Chinese Journal of Materials Research, 17(4) , 428(2003) (姜利祥,何世禹,杨德庄,材料研究学报,17(4) ,428(2003) )
4 R.S.Sperber, AIAA-90-0781, (1990)
5 J.Dauphin, Vacuum, 32(10/11) , 669(1982)
6 Toshiyuki Shimokawa, Hisaya Katoh, Yasumasa Hamaguchi, Shigeo Sanbongi, Hiroshi Mizuno, Journal of Composite Materials, 7, 885(2002)
7 L.Hancox, Thermal Cycling Materials & Design, 19, 85(1998)
8 Satoshi Kobayashi, Kazuhiro Terada, Shinji Ogihara, Nobuo Takeda, Composites Science and Technology, 61, 1735(2001)
9 Kwang-Bok Shin, Chun-Gon Kim, Chang-Sun Hong, Ho-Hyung Lee, Composites Part B: Engineering, 31, 223(2000)
10 LI Zhijun, LI Xuecheng, BAO Jianwen, CHENG Xiangbao, Journal of Materials Engineering, 11, 10(1999) (李志君,李学成,包建文,陈祥宝,材料工程,11,10(1999) )
11 A.G.Miller, A.L.Wingert, Fracture Surface characterization of Commercial Graphite/Epoxy Systems, in: Fractography of Modern Engineering Materials, STP 948(ASTM, PA, 1987) p.154
12 D.Purslow, Composites, 241, 10(1981)
13 R.A.Grove, B.W.Smith, Compendium of Post-Failure Analysis Techniques for Composite Materials. AFWAL-TR-86-4137 (Boeing Military Aircraft Co. Seattle, WA, 1986) p.137
14 XI Niansheng, Journal of Aviation Materials, 2,56(2000) (习年生,航空材料学报,2,56(2000) )
15 D.F.Thompson, H.W.Babel, SAMPE Quarterly, 21(1) , 27(1989)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 郭飞, 郑成武, 王培, 李殿中. 稀土元素对低碳钢中奥氏体-铁素体相变动力学的影响[J]. 材料研究学报, 2023, 37(7): 495-501.
[11] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[12] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[13] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[14] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[15] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.