Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (9): 641-649    DOI: 10.11901/1005.3093.2024.462
  研究论文 本期目录 | 过刊浏览 |
δ-铁素体含量对高SiN奥氏体不锈钢焊缝性能的影响
杨景清1,2, 董文超2,3(), 陆善平2()
1.中国科学技术大学材料科学与工程学院 沈阳 110016
2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
3.中国科学院 核用材料与安全评价重点实验室 沈阳 110016
Effect of δ-ferrite Content on Resistance to Cracking and Nitric Acid Corrosion of Weld Joints for High SiN Austenitic Stainless Steel
YANG Jingqing1,2, DONG Wenchao2,3(), LU Shanping2()
1.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

杨景清, 董文超, 陆善平. δ-铁素体含量对高SiN奥氏体不锈钢焊缝性能的影响[J]. 材料研究学报, 2025, 39(9): 641-649.
Jingqing YANG, Wenchao DONG, Shanping LU. Effect of δ-ferrite Content on Resistance to Cracking and Nitric Acid Corrosion of Weld Joints for High SiN Austenitic Stainless Steel[J]. Chinese Journal of Materials Research, 2025, 39(9): 641-649.

全文: PDF(22695 KB)   HTML
摘要: 

调控Cr和Ni当量控制高SiN奥氏体不锈钢焊缝金属中的δ-铁素体含量,并使用金相显微镜(OM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电子探针(EPMA)等手段对其表征,研究了δ-铁素体含量对焊缝的抗裂性能和耐硝酸腐蚀性能的影响。结果表明,δ-铁素体含量的提高使焊缝金属的热裂纹敏感性降低,富含Cr元素的δ-铁素体与奥氏体基体产生的电化学腐蚀使δ-铁素体优先腐蚀。随着δ-铁素体含量的提高,熔敷金属的腐蚀速率随之提高。含量过高的δ-铁素体在焊缝中的柱状晶内形成网状结构,产生腐蚀蔓延而导致腐蚀后期的腐蚀速率稍有提高。

关键词 金属材料高SiN不锈钢焊缝金属抗裂性能耐硝酸腐蚀δ-铁素体    
Abstract

The effect of the variation of δ-ferrite content of weld seams on the resistance to hot cracking and corrosion in HNO3 solution of weld joints for a high SiN stainless steel was studied, while weld joints were made with five types of welding wires with different contents of δ-ferrite as filler so that to adjust the Cr and Ni equivalent for the weld seams. Which were then characterized by means of optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA) in terms of the influence of δ-ferrite on properties of the weld seams. The results demonstrated that the significant increase in the content of δ-ferrite could reduce the cracking sensitivity of the weld metal. However, if δ-ferrite rich in Cr to certain extent, the possibly existed galvanic effect between which and the austenitic matrix may lead to preferential corrosion of δ-ferrite. As the δ-ferrite content continued to increase, the corrosion rate of the weld seams accelerated. Notably, when the δ-ferrite content exceeded a critical threshold, the δ-ferrite began to form an interconnected network within the columnar dendrite. This morphological transformation resulted in a phenomenon of corrosive spreading, where the corrosion front propagated rapidly across the material. Consequently, the corrosion rate exhibited a slight increase during the latter stages of the process.

Key wordsmetallic materials    high SiN stainless steel weld metal    crack resistance    nitric acid corrosion resistance    δ-ferrite
收稿日期: 2024-11-22     
ZTFLH:  TG422.3  
基金资助:中国科学院战略性先导科技专项(XDA0410203)
通讯作者: 董文超,正高级工程师,wcdong@imr.ac.cn,研究方向为焊接结构力学;
陆善平,研究员,shplu@imr.ac.cn,研究方向为焊接材料与焊接工艺
Corresponding author: DONG Wenchao, Tel: (024)23971429, E-mail: wcdong@imr.ac.cn;
LU Shanping, Tel: (024)23971429, E-mail: shplu@imr.ac.cn
作者简介: 杨景清,男,2000年生,硕士生
No.CCrNiMoMnSiNNbFe
1δ0.0119.415.80.0214.20.10.02Bal.
2δ19.415.80.020.54.20.10.02
7δ20.016.00.71.54.00.080.1
8δ20.016.00.31.54.00.0350.1
10δ20.016.00.31.54.50.060.02
表1  焊丝的化学成分
图1  焊缝熔敷金属试样坡口的形式及其尺寸示意图(单位:mm)
No.CCrNiMoMnSiNNbFeδ content
0.003319.3415.60.0311.014.120.1000.007Bal.1.3
0.002319.3315.60.0260.564.120.1000.0071.7
0.008219.9516.00.671.414.020.0740.107.1
0.004419.8016.10.301.503.950.0360.0848.2
10δ0.007819.6815.50.311.464.270.0510.0059.7
表2  δ-铁素体含量不同的焊缝熔敷金属的化学成分
图2  压板对接(FISCO)实验装置
图3  压板对接(FISCO)钢板和焊缝尺寸以及焊缝裂纹长度的计算[15]
图4  腐蚀试样的取样位置及其尺寸示意图
图5  FISCO实验后焊板表面的宏观形貌
图6  1δ和7δ试样焊缝纵截面的宏观形貌
No.Crack length / mmWeld seam length / mmCrack rate / %
1δ12517272.7
2δ6817838.2
7δ4617426.4
表3  FISCO实验后焊缝金属的裂纹长度、焊缝长度和裂纹率
图7  不同δ-铁素体含量的熔敷金属的微观组织
图8  不同熔敷金属的腐蚀速率及其与时间的关系
图9  不同δ-铁素体含量的焊缝金属腐蚀10 d和30 d后的表面形貌
图10  腐蚀坑处的高倍微观形貌
图11  腐蚀试样的纵截面形貌
No.PhaseComposition / %
CrNiFeSiMnMoN
7δFCC19.1216.9057.723.911.520.690.07
BCC23.6211.1358.454.541.040.990.04
8δFCC19.5516.6258.463.481.570.200.04
BCC24.7410.6158.504.391.060.440.02
10δFCC19.2416.6358.074.241.500.260.05
BCC24.1510.5458.924.930.990.440.03
表4  不同δ-铁素体含量的熔敷金属中铁素体和奥氏体的占比以及元素成分
图12  8δ和10δ试样腐蚀不同时间后纵截面的金相照片
[1] Fauvet P. 19 - Corrosion issues in nuclear fuel reprocessing plants [A]. Féron D. Nuclear Corrosion Science and Engineering [M]. Oxford: Woodhead Publishing, 2012
[2] Raj B, Mudali U K. Materials development and corrosion problems in nuclear fuel reprocessing plants [J]. Prog. Nucl. Energ., 2006, 48(4): 283
[3] Wang W, Luo M, Zhang Q F. Corrosion resistance of silicon-containing austenitic stainless steel in boiling nitric acid containing Ru n + [J]. Iron Steel Res., 2009, 21(8): 41
[3] 王 玮, 罗 明, 张启富. 硅对含强氧化性离子沸腾硝酸中奥氏体不锈钢耐蚀性的影响 [J]. 钢铁研究学报, 2009, 21(8): 41
[4] Rovere C A D, Silva R, Hammer P, et al. Corrosion behavior of Fe-Mn-Si-Cr-Ni-Co shape memory stainless steel in highly oxidizing medium [J]. Mater. Sci. Forum, 2016, 869: 669
[5] Laurent B, Gruet N, Gwinner B, et al. Dissolution and passivation of a silicon-rich austenitic stainless steel during active-passive cycles in sulfuric and nitric acid [J]. J. Electrochem. Soc., 2017, 164(13): C892
[6] Robin R, Miserque F, Spagnol V. Correlation between composition of passive layer and corrosion behavior of high Si-containing austenitic stainless steels in nitric acid [J]. J. Nucl. Mater., 2008, 375(1): 65
[7] Féron D. 2 - Overview of nuclear materials and nuclear corrosion science and engineering [A]. Féron D. Nuclear Corrosion Science and Engineering [M]. Oxford: Woodhead Publishing, 2012
[8] Balbaud-Célérier F, Gruet N, Gwinner B, et al. 8 - Corrosion behavior of stainless steels in nitric acid in the context of nuclear fuel reprocessing plants [A]. Ritter S. Nuclear Corrosion [M]. Duxford: Woodhead Publishing, 2020
[9] Qi J J, Huang B Y, Wang Z H, et al. Dependence of corrosion resistance on grain boundary characteristics in a high nitrogen CrMn austenitic stainless steel [J]. J. Mater. Sci. Technol., 2017, 33(12): 1621
doi: 10.1016/j.jmst.2017.09.016
[10] Ningshen S, Mudali U K, Amarendra G, et al. Corrosion assessment of nitric acid grade austenitic stainless steels [J]. Corros. Sci., 2009, 51(2): 322
[11] Liu J, Xu T, Wang C F, et al. Influence of crystall structure on corrosion resistance of 316 stainless steel by first-principles calculation [J]. Mater. Res. Appl., 2024, 18(5): 721
[11] 柳 剑, 许 涛, 王翠凤 等. 晶体结构对316不锈钢腐蚀影响的第一性原理研究 [J]. 材料研究与应用, 2024, 18(5): 721
[12] Guo L Q, Li M, Shi X L, et al. Effect of annealing temperature on the corrosion behavior of duplex stainless steel studied by in situ techniques [J]. Corros. Sci., 2011, 53(11): 3733
[13] Antony P J, Raman R K S, Mohanram R, et al. Influence of thermal aging on sulfate-reducing bacteria (SRB)-influenced corrosion behaviour of 2205 duplex stainless steel [J]. Corros. Sci., 2008, 50(7): 1858
[14] Fauvet P, Balbaud F, Robin R, et al. Corrosion mechanisms of austenitic stainless steels in nitric media used in reprocessing plants [J]. J. Nucl. Mater., 2008, 375(1): 52
[15] Li Y J, Wang J. Welding Property Testing and Analysis Methods [M]. Beijing: Chemical Industry Press, 2014
[15] 李亚江, 王 娟. 焊接性试验与分析方法 [M]. 北京: 化学工业出版社, 2014
[16] Brooks J A, Thompson A W. Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds [J]. Int. Mater. Rev., 1991, 36(1): 16
[17] Steele D F. Corrosion control in nuclear fuel reprocessing [J]. Ind. Lubr. Tribol., 1986, 38(5): 164
[18] Schmuki P, Virtanen S, Isaacs H S, et al. Electrochemical behavior of Cr2O3/Fe2O3 artificial passive films studied by in situ XANES [J]. J. Electrochem. Soc., 1998, 145(3): 791
[19] Takeuchi M, Takeda S, Nagai T, et al. Effect of chemical species in spent nuclear fuel reprocessing solution on corrosion of austenitic stainless steel [J]. Trans. Atom. Energ. Soc. Jpn., 2005, 4(1): 32
[20] Zhang Y Y, Zhang Z B. Study on preferential dissolution of duplex weldments of stainless steels [J]. Corros. Sci. Prot. Technol., 1993, 5(4): 238
[20] 张余英, 张振邦. 不锈钢双相焊缝选择性腐蚀研究 [J]. 腐蚀科学与防护技术, 1993, 5(4): 238
[21] Maurice V, Yang W P, Marcus P. X‐Ray photoelectron spectroscopy and scanning tunneling microscopy study of passive films formed on (100) Fe‐18Cr‐13Ni single‐crystal surfaces [J]. J. Electrochem. Soc., 1998, 145(3): 909
[1] 詹杰, 陈小江, 邹之利, 苏兴东, 谢世宇, 江亮, 王金铃, 王烈林. 纳米Ag0@ACF材料的制备及其对气态碘的吸附性能[J]. 材料研究学报, 2025, 39(9): 673-682.
[2] 施渊吉, 程诚, 张海涛, 胡道春, 陈晶晶, 黎军顽. β-SiC半导体器件在滑动摩擦中材料去除行为的纳观分析[J]. 材料研究学报, 2025, 39(9): 701-711.
[3] 周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
[4] 王铭宇, 李述军, 和正华, 唐明德, 张思倩, 张浩宇, 周舸, 陈立佳. 激光功率和扫描速度对SLM制备Ti5553合金性能的影响[J]. 材料研究学报, 2025, 39(8): 583-591.
[5] 耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
[6] 陆通, 王亚娜, 张超, 雷芃, 张鸿荣, 黄光伟, 郑立允. BN掺杂对热变形钕铁硼磁体性能的影响[J]. 材料研究学报, 2025, 39(8): 612-618.
[7] 张伟, 张兵, 周军, 刘跃, 王旭峰, 杨锋, 张海芹. 冷轧 Q 值对TA18管材塑性变形织构演变的影响[J]. 材料研究学报, 2025, 39(8): 619-631.
[8] 谭德新, 陈诗慧, 罗小丽, 宁小媚, 王艳丽. 富缺陷Pd纳米片的合成和对甘油的电催化氧化性能[J]. 材料研究学报, 2025, 39(8): 632-640.
[9] 张宁, 王耀奇, 杨毅, 慕延宏, 李震, 陈志勇. Ti65钛合金的超塑变形和微观组织演变[J]. 材料研究学报, 2025, 39(7): 489-498.
[10] 刘晶, 李云杰, 秦煜, 李琳琳. GCr15轴承钢中渗碳体粒径的调控对其硬度的影响[J]. 材料研究学报, 2025, 39(7): 521-532.
[11] 韩杨燚, 张腾昊, 张可, 赵时雨, 汪创伟, 余强, 李景辉, 孙新军. 终冷温度对Ti-V-Mo复合微合金钢析出相、组织和硬度的影响[J]. 材料研究学报, 2025, 39(7): 533-541.
[12] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[13] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.
[14] 姜爱龙, 谭炳治, 庞建超, 石锋, 张允继, 邹成路, 李守新, 伍启华, 李小武, 张哲峰. 蠕墨铸铁RuT300RuT450的低周疲劳性能和损伤机制[J]. 材料研究学报, 2025, 39(6): 443-454.
[15] 韩磊磊, 王文涛, 吴赟, 陈嘉俊, 赵勇. 无氟化学溶液法制备YBCO超导焊料的高温生长工艺研究[J]. 材料研究学报, 2025, 39(6): 474-480.