Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (8): 612-618    DOI: 10.11901/1005.3093.2024.335
  研究论文 本期目录 | 过刊浏览 |
BN掺杂对热变形钕铁硼磁体性能的影响
陆通1,2, 王亚娜1,2,3, 张超1,2, 雷芃1,2, 张鸿荣1,2, 黄光伟1,2(), 郑立允1,2,4
1.河北工程大学材料科学与工程学院 邯郸 056038
2.河北省稀土永磁材料与应用工程研究中心 邯郸 056038
3.中北大学材料科学与工程学院 太原 030051
4.钢铁研究总院功能材料研究所 北京 100081
Effect of BN Spray-doping on Magnetic Properties and Resistivity of Hot-deformed Nd-Fe-B Magnets
LU Tong1,2, WANG Yana1,2,3, ZHANG Chao1,2, LEI Peng1,2, ZHANG Hongrong1,2, HUANG Guangwei1,2(), ZHENG Liyun1,2,4
1.College of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, China
2.Hebei Engineering Research Center for Rare Earth Permanent Magnetic Materials and Application, Handan 056038, China
3.College of Materials Science and Engineering, North University of China, Taiyuan 030051, China
4.Division of Functional Materials, Central Iron and Steel Research Institute, Beijing 100081, China
引用本文:

陆通, 王亚娜, 张超, 雷芃, 张鸿荣, 黄光伟, 郑立允. BN掺杂对热变形钕铁硼磁体性能的影响[J]. 材料研究学报, 2025, 39(8): 612-618.
Tong LU, Yana WANG, Chao ZHANG, Peng LEI, Hongrong ZHANG, Guangwei HUANG, Liyun ZHENG. Effect of BN Spray-doping on Magnetic Properties and Resistivity of Hot-deformed Nd-Fe-B Magnets[J]. Chinese Journal of Materials Research, 2025, 39(8): 612-618.

全文: PDF(13058 KB)   HTML
摘要: 

用物理喷涂方法在钕铁硼磁体中引入高熔点绝缘BN颗粒,通过热压热变形制备BN掺杂热变形钕铁硼磁体,研究了BN喷涂量对其微观结构、电阻率、磁性能和温度稳定性的影响。结果表明:用物理喷涂方法引入的BN良好地包覆了钕铁硼磁粉。引入BN可显著提高磁体的电阻率,使其电阻率由未引入BN时的153.5 μΩ·cm提高到(喷涂量为0.8%时的)287.7 μΩ·cm。引入适量的BN,可改善磁体的晶粒取向。但是,BN喷涂量的增加使磁体的磁性能和温度稳定性降低。BN喷涂量为0.6%的磁体其综合磁电性能优异:最大磁能积(BH)max为36.67 MGOe;剩磁Br为12.48 kGs;矫顽力Hcj为11.85 kOe;电阻率为254.8 μΩ·cm。在增大磁体电阻率的同时保持较高的磁性能,有利于其在较高的温度应用。

关键词 金属材料BN掺杂热变形钕铁硼磁体电阻率磁性能    
Abstract

Nd-Fe-B permanent magnets are widely used in aerospace, new energy vehicles, wind power generation and many other fields due to their excellent performance. By increasing the resistivity of the Nd-Fe-B magnets, the temperature rise of the magnet can be effectively reduced and the working stability of the magnet can be improved. Herein, a novel technique was adopted to prepare the BN-doped hot-deformed Nd-Fe-B magnets, i.e. first, by spraying an appropriate amount of BN demolding agent onto the surface of the commercial fast-quenching Nb-Fe-B magnetic powders to obtain the BN-coated magnetic powders (namely 0, 0.2, 0.4, 0.6 and 0.8 of BN, in mass fraction respectively), subsequently, the hot-deformed bulk BN-doped Nb-Fe-B magnets were prepared with the modified powders as raw material by hot pressing process and then hot deformation process. The effect of different BN doping amount on the magnetic properties, resistivity, temperature stability and microstructure of the hot-deformed Nd-Fe-B magnets were studied. The results show that the sprayed BN presents good adhesion on the Nd-Fe-B magnetic powders; The introduction of BN by spraying can significantly improve the resistivity of the magnets, which increases from 153.5 μΩ·cm for magnets of the plain powders to 287.7 μΩ·cm for that of the powers coated with 0.8%BN, implying an increase of 87%. The grain orientation of the magnets can also be improved by the introduction of proper BN. With the increase of coated BN amount, the magnetic properties and temperature stability of the magnets decrease gradually. When the sprayed amount of 0.6% BN, the magnets has excellent comprehensive magnetoelectric performance: the maximum magnetic energy product (BH)max is 36.67 MGOe; the remanence Br is 12.48 kGs; the coercivity Hcj is 11.85 kOe; the resistivity is 254.8 μΩ·cm. It follows that this study provides a technical path to effectively improve the resistivity of magnets while maintaining high magnetic properties, so that the prepared magnets may be suitable for high operating temperature scenarios.

Key wordsmetallic materials    BN doping    hot deformation Nd-Fe-B magnets    resistivity    magnetic properties
收稿日期: 2024-08-15     
ZTFLH:  TM273  
基金资助:国家重点研发计划(2022YFB3505600);中央引导地方科技发展资金(206Z1007G);河北省自然科学基金(E2021402001)
通讯作者: 黄光伟,副教授,huangguangwei@hebeu.edu.cn,研究方向为稀土永磁材料
Corresponding author: HUANG Guangwei, Tel: 13653352095, E-mail: huangguangwei@hebeu.edu.cn
作者简介: 陆 通,男,1999年生,硕士
图1  喷涂0.6%BN磁粉表面的SEM、喷涂磁粉的区域以及Fe、Nd、N的EDS图
图2  BN喷涂量对热变形磁体电阻率的影响
图3  不同BN喷涂量热变形磁体的室温退磁曲线和BN喷涂量对热变形磁体剩磁Br、矫顽力Hcj以及最大磁能积(BH)max的影响
图4  不同BN喷涂量热变形磁体在不同温度下的矫顽力
BN amount / %, mass fraction20-80 oC20-100 oC20-120 oC
0-0.67-0.64-0.60
0.2-0.74-0.69-0.65
0.4-0.78-0.72-0.67
0.6-0.80-0.74-0.68
0.8-0.79-0.73-0.69
表1  不同BN喷涂量热变形磁体的矫顽力温度系数
图5  不同BN喷涂量热变形钕铁硼磁体的XRD谱
图6  不同BN喷涂量热变形钕铁硼磁体的SEM照片
图7  BN喷涂量为0.6%的热变形钕铁硼磁体的SEM照片和EDS线扫描图
图8  BN喷涂量为0.6%的热变形钕铁硼磁体的SEM照片和EDS元素分布
[1] Coey J M D. Perspective and prospects for rare earth permanent magnets [J]. Engineering, 2020, 6(2): 119
[2] Trench A, Sykes J P. Rare earth permanent magnets and their place in the future economy [J]. Engineering, 2020, 6(2): 115
[3] Gutfleisch O, Willard M A, Brück E, et al. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient [J]. Adv. Mater., 2011, 23(7): 821
[4] Huang G W, Lu T, Wang Y N, et al. Research progress and prospect of high electrical resistivity NdFeB permanent magnetic materials [J]. J. Chin. Soc. Rare Earths, 2024, 42(5): 826
[4] 黄光伟, 陆 通, 王亚娜 等. 高电阻率NdFeB永磁材料的研究进展与展望 [J]. 中国稀土学报, 2024, 42(5): 826
[5] Zheng L Y, Fang K, Li W. Recent development of high electrical resistivity rare earth permanent magnetic materials [J]. Mater. China, 2018, 37(9): 645
[5] 郑立允, 房 刊, 李 卫. 高电阻率稀土永磁材料研究进展 [J]. 中国材料进展, 2018, 37(9): 645
[6] Kwon H W, Kang M S. Prospect of developing Nd-Fe-B-type magnet with high electrical resistivity [J]. Rare Met., 2020, 39: 2
[7] Chen R J, Xia X S, Tang X, et al. Significant progress for hot-deformed Nd-Fe-B magnets: a review [J]. Materials, 2023, 16(13): 4789
[8] Hirosawa S, Matsuura Y, Yamamoto H, et al. Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals [J]. J. Appl. Phys., 1986, 59(3): 873
[9] Zheng X F, Li M, Chen R J, et al. Coercivity enhancement by inhibiting the formation of coarse grains region in hot-deformed Nd-Fe-B magnets with WC nano-particles addition [J]. Scr. Mater., 2017, 132: 49
[10] Li M, Chen R J, Jin C X, et al. Texture and microstructure improvement of hot-deformed magnets with platelet-like nano h-BN addition [J]. Scr. Mater., 2018, 152: 127
[11] Li J, Bian Y, Xu K, et al. Improvement of comprehensive magnetic properties for hot-deformed NdFeB magnets via intergranular additions of nano-TiC [J]. Mater. Lett., 2020, 267: 127537
[12] Zheng X F, Chen R J, Lei F, et al. Impact of nano-particles with high-melting point on magnetic properties and microstructures of hot-deformed Nd-Fe-B magnet [J]. Powder. Metall. Ind., 2018, 28(6): 42
[12] 郑晓芬, 陈仁杰, 雷 芳 等. 高熔点纳米颗粒添加对热变形Nd-Fe-B磁体性能与微观结构的影响 [J]. 粉末冶金工业, 2018, 28(6): 42
[13] Zheng L Y, Zhang K, Li Y F, et al. Microstructure and properties of die-upset Nd-Fe-B/Dy2O3 composite magnets [J]. IEEE Trans. Magn., 2013, 49(7): 3368
[14] Liu Q Z, Zhang L T, Xu F, et al. Dysprosium nitride-modified sintered Nd-Fe-B magnets with increased coercivity and resistivity [J]. Jpn. J. Appl. Phys., 2010, 49(9R): 093001
[15] Sawatzki S, Dirba I, Schultz L, et al. Electrical and magnetic properties of hot-deformed Nd-Fe-B magnets with different DyF3 additions [J]. J. Appl. Phys., 2013, 114(13): 133902
[16] Li W, Zheng L Y, Bi W C, et al. Effect of CaF2 addition on the microstructure and magnetic and electrical properties of sintered Nd-Fe-B magnets [J]. IEEE Trans. Magn., 2014, 50(1): 1001504
[17] Zheng L Y, Zheng D W, Xin H H, et al. Microstructure, magnetic properties, and electrical resistivity of Nd-Fe-B/NdF3 composite magnets [J]. IEEE Trans. Magn., 2014, 50(11): 2103404
[18] Kautsar Z H, Sepehri-Amin H, Tang X, et al. High-resistivity anisotropic hot-deformed Nd-Fe-B magnets prepared from DyF3 electrophoretic deposited powders [J]. J. Alloy. Compd., 2023, 942: 168855
[19] Zheng L Y, Li W, Zhu M G, et al. Microstructure, magnetic and electrical properties of the composite magnets of Nd-Fe-B powders coated with silica layer [J]. J. Alloy. Compd., 2013, 560: 80
[20] Singh Y. Electrical resistivity measurements: a review [A]. International journal of modern physics: Conference series [C]. Singapore: World Scientific Publishing Company, 2013: 745
[21] Chen H X, Wang R Q, Li J, et al. Simultaneous enhancement of magnetic properties and electric resistance of hot-deformed Nd-Fe-B magnets by doping insulating nano-diamonds [J]. J. Alloy. Compd., 2023, 965: 171424
[22] Zhang M C, Feng Q Y, Liu Y H, et al. Effect of Al2O3 doping on resistivity and magnetic properties of sintered NdFeB magnets [J]. Trans. Mater. Heat Treat., 2024, 45(4): 95
[22] 张梦成, 冯泉妤, 刘友好 等. Al2O3掺杂对烧结钕铁硼磁体电阻率和磁性能的影响 [J]. 材料热处理学报, 2024, 45(4): 95
[23] Li L, Li S H, Zhang M C, et al. Effect of co-doping of nano-Al and Cu65Ga35on magnetic properties and thermal stability of sintered Nd-Fe-B magnets [J]. Trans. Mater. Heat Treat., 2022, 43(5): 55
[23] 李 磊, 李燊昊, 张梦成 等. 纳米Al及Cu65Ga35共掺杂对烧结钕铁硼磁体磁性能及热稳定性的影响 [J]. 材料热处理学报, 2022, 43(5): 55
[24] Chen J, Yang H Y, Xu G Q, et al. Phosphating passivation of vacuum evaporated Al/NdFeB magnets boosting high anti-corrosion performances [J]. Surf. Coat. Technol., 2020, 399: 126115
[1] 周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
[2] 耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
[3] 王铭宇, 李述军, 和正华, 唐明德, 张思倩, 张浩宇, 周舸, 陈立佳. 激光功率和扫描速度对SLM制备Ti5553合金性能的影响[J]. 材料研究学报, 2025, 39(8): 583-591.
[4] 张伟, 张兵, 周军, 刘跃, 王旭峰, 杨锋, 张海芹. 冷轧 Q 值对TA18管材塑性变形织构演变的影响[J]. 材料研究学报, 2025, 39(8): 619-631.
[5] 谭德新, 陈诗慧, 罗小丽, 宁小媚, 王艳丽. 富缺陷Pd纳米片的合成和对甘油的电催化氧化性能[J]. 材料研究学报, 2025, 39(8): 632-640.
[6] 韩杨燚, 张腾昊, 张可, 赵时雨, 汪创伟, 余强, 李景辉, 孙新军. 终冷温度对Ti-V-Mo复合微合金钢析出相、组织和硬度的影响[J]. 材料研究学报, 2025, 39(7): 533-541.
[7] 刘晶, 李云杰, 秦煜, 李琳琳. GCr15轴承钢中渗碳体粒径的调控对其硬度的影响[J]. 材料研究学报, 2025, 39(7): 521-532.
[8] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[9] 张宁, 王耀奇, 杨毅, 慕延宏, 李震, 陈志勇. Ti65钛合金的超塑变形和微观组织演变[J]. 材料研究学报, 2025, 39(7): 489-498.
[10] 韩磊磊, 王文涛, 吴赟, 陈嘉俊, 赵勇. 无氟化学溶液法制备YBCO超导焊料的高温生长工艺研究[J]. 材料研究学报, 2025, 39(6): 474-480.
[11] 姜爱龙, 谭炳治, 庞建超, 石锋, 张允继, 邹成路, 李守新, 伍启华, 李小武, 张哲峰. 蠕墨铸铁RuT300RuT450的低周疲劳性能和损伤机制[J]. 材料研究学报, 2025, 39(6): 443-454.
[12] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.
[13] 王恒霖, 丁汉林, 柴锋, 罗小兵, 王子健, 项重辰. 调质热处理对不同轧制温度的含Cu低合金高强钢力学性能的影响[J]. 材料研究学报, 2025, 39(6): 401-412.
[14] 袁新雨, 史非, 刘敬肖, 张皓杰, 杨大毅, 王美玉, 任明. Er2O3 对二硅酸锂玻璃陶瓷的结构和性能的影响[J]. 材料研究学报, 2025, 39(6): 455-462.
[15] 李海斌, 徐惠婷, 唐伟, 吕海波, 帅美荣. 热轧碳钢/不锈钢复合板结合界面电解腐蚀的毛细效应[J]. 材料研究学报, 2025, 39(5): 362-370.