Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (8): 619-631    DOI: 10.11901/1005.3093.2024.433
  研究论文 本期目录 | 过刊浏览 |
冷轧 Q 值对TA18管材塑性变形织构演变的影响
张伟1,2,3, 张兵1,3(), 周军2, 刘跃2, 王旭峰2, 杨锋2, 张海芹2
1.西安建筑科技大学冶金工程学院 西安 710055
2.西安西部新锆科技股份有限公司 西安 710299
3.西安建筑科技大学 功能材料加工国家地方联合工程研究中心 西安 710055
Influence of Cold Rolling Q Ratio on Plastic Deformation Texture Evolution of TA18 Tube
ZHANG Wei1,2,3, ZHANG Bing1,3(), ZHOU Jun2, LIU Yue2, WANG Xufeng2, YANG Feng2, ZHANG Haiqin2
1.College of Metallurgy Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2.Xi'an Western Energy Material Technologies Co., Ltd., Xi'an 710299, China
3.National and Local Engineering Researching Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an 710055, China
引用本文:

张伟, 张兵, 周军, 刘跃, 王旭峰, 杨锋, 张海芹. 冷轧 Q 值对TA18管材塑性变形织构演变的影响[J]. 材料研究学报, 2025, 39(8): 619-631.
Wei ZHANG, Bing ZHANG, Jun ZHOU, Yue LIU, Xufeng WANG, Feng YANG, Haiqin ZHANG. Influence of Cold Rolling Q Ratio on Plastic Deformation Texture Evolution of TA18 Tube[J]. Chinese Journal of Materials Research, 2025, 39(8): 619-631.

全文: PDF(26172 KB)   HTML
摘要: 

对再结晶退火温度和初始织构相同的冷轧航空TA18管材进行变形量(60%)相同、Q值(1.1~2.0)不同的冷轧,并进行电子背散射衍射(EBSD)测试,研究了冷轧Q值对其塑性变形织构演变的影响。结果表明:沿不同Q值冷轧管材的轴向(RD)方向呈现“河流状”纤维组织,表现出大塑性变形的典型特征。随着Q值的增大,晶粒取向由切向(TD)转变为靠近法向(ND)。冷轧Q值协同调控TA18管材的塑性变形行为和织构演变。随着Q值的增大,冷轧管材晶粒内部取向差转轴(IGMA)的Taylor轴分布由<0001>转变为<101¯0>,其塑性变形机制由柱面滑移演变为锥面滑移。其原因是,Q值的增大使冷轧管材晶粒的c轴由TD方向偏移到ND方向和锥面滑移系的Schmid因子不断增大,从而使锥面滑移系易于启动;同时,<0001>//ND型织构逐渐取代<0001>//TD型织构成为主织构类型和管材基面径向织构因子不断增强。根据航空TA18管材的AMS技术指标,冷轧Q值≥ 1.49时,收缩应变比(CSR)满足使用要求。

关键词 金属材料晶粒取向冷轧变形机制织构演变    
Abstract

A kind of cold rolled aviation tube of TA18 type that has been subjected to recrystallization annealing treatment to produce an uniform initial texture. Subsequently, these tubes were subjected to a second round cold rolling again by the same deformation amount (60%) but different Q ratios (1.1-2.0). On this basis, the influence of cold rolling Q ratio on the plastic deformation texture evolution of TA18 aviation tube was studied by using the electron backscatter diffraction (EBSD) technique, in terms of the In-Grain Misorientation Axes (IGMA) and microstructures of cold rolled tubes with different Q ratios. The results show that the cold rolled tubes with different Q ratio present a "river like" fiber structure along the axial (RD) direction, showing the typical characteristics of large plastic deformation. With the increase of Q ratio, the grain orientation changes from the tangential direction (TD) to the one close to the normal direction (ND). The cold rolling Q ratio has a synergistic effect on the plastic deformation behavior and texture evolution of TA18 tube: with the increase of Q ratio, the Taylor axes distribution changes from <0001> to <101¯0>, and the plastic deformation mechanism of cold rolled tubes changes from prismatic slip to pyramidal slip. The reason may be that when the Q ratio increases, the c axis of grains continuously shifts from TD direction to ND direction, and the Schmid factor of conical slip systems increases, which leads to the easy start of conical slip systems; At the same time, the <0001>//ND texture gradually replaced the <0001>//TD texture as the main texture type, and the radial texture factor at the base of the tube was continuously enhanced. In accordance with the AMS standard, when the cold rolling Q ratio is ≥ 1.49, the contraction strain ratio (CSR) of TA18 tubes meets the requirements.

Key wordsmetallic materials    grain orientation    cold rolling    deformation mechanism    texture evolution
收稿日期: 2024-10-23     
ZTFLH:  TG146  
基金资助:陕西省秦创原“科学家+工程师”队伍建设项目(2022KXJ-145);陕西省重点研发项目(2024CY-JJQ-71)
通讯作者: 张兵,教授,r.zhang@163.com,研究方向为超细晶材料制备、先进复合材料加工技术
Corresponding author: ZHANG Bing, Tel: 13991363825, E-mail: r.zhang@163.com
作者简介: 张 伟,男,1992年生,硕士
图1  EBSD制样工艺流程
图2  取向差转轴法[16]
Slip systemNumber of variantsTaylor axisNumber of Taylor axis variants
{011¯0}<2¯110>3<0001>1
{0001}<2¯110>3<01¯10>3
{011¯1¯}<2¯110>6<01¯12>6
{011¯1}<1¯1¯23>12<138¯5¯3>12
{12¯11}<112¯3>12<61¯5¯3>12
{112¯2}<112¯3>6<11¯00>3
表1  钛合金中滑移系的Taylor轴分布[16]
图3  不同Q值冷轧管材的IPF图
图4  不同Q值冷轧管材的KAM图
图5  不同Q值冷轧管材的KAM分布
图6  冷轧管材的{0001}、{101¯0}、{112¯0}极图和{0001}面的Kearns系数
图7  冷轧管材的CSR值
图8  退火管材的Schmid因子
图9  Q = 1.1冷轧管材的IGMA分布
图10  Q = 1.6冷轧管材的IGMA分布
图11  Q = 2.0冷轧管材的IGMA分布
QTaylor axesMain slip systemsSlip mechanismsKearns factor
1.1<0001>{011¯0}<112¯0>Prismatic<a> slipFn, Ft, Fr
1.4<0001>{011¯0}<112¯0>Prismatic<a> slipFn↑, Ft↓, Fr
1.6<0001> and <01¯10>{011¯0}<112¯0> and {112¯2}<1¯1¯23>Prismatic<a> slip + Pyramidal<c + a>slipFn↑, Ft↓, Fr
1.8<0001> and <01¯10>{011¯0}<112¯0> and {112¯2}<1¯1¯23>Prismatic<a> slip + Pyramidal<c + a>slipFn↑, Ft↓, Fr
2.0<01¯10>{112¯2}<1¯1¯23>Pyramidal<c + a>slipFn↑, Ft↓, Fr
表2  不同Q值冷轧管材的塑性变形机制
Q ratioEuler (φ1, , φ2)Main texture componentAngle with (0002) surface / (°)
1.1(87, 82, 5)(2¯42¯1)[0001]81
1.4(92, 32, 55)(112¯6)[1¯1¯21]28
1.6(80, 31, 5)(112¯6)[12¯11]28
1.8(81, 25, 5)(112¯6)[12¯11]28
2.0(88, 31, 60)(112¯6)[1¯1¯21]28
表3  TA18管材的主织构组分
图12  不同Q值冷轧管材的织构演变示意图
[1] Wei D, Chen Y Y, Li H, et al. Residual stress evolution and tailoring of cold pilgered Ti-3Al-2.5V tube [J]. Int. J. Mech. Sci., 2022, 225: 107366
[2] Li Z X, Zhan M, Guo K, et al. Texture development of Ti-3Al-2.5V titanium alloy tubes [J]. Rare Met. Mater. Eng., 2017, 46(11): 3169
[3] Yang J C, Li H, Huang D, et al. Deformation-based joining for high-strength Ti-3Al-2.5V tubular fittings based on internal roller swaging [J]. Int. J. Mech. Sci., 2020, 171: 105367
[4] Liu F, Li Y, Wang W R, et al. Effect of texture on circumferential tensile properties of TA18 titanium alloy tubing [J]. Rare Met. Mater. Eng., 2020, 49(6): 2011
[4] 刘 凡, 李 赟, 王文睿 等. TA18钛合金管材织构对环向拉伸性能的影响 [J]. 稀有金属材料与工程, 2020, 49(6): 2011
[5] Ye Y, Wang J Y. An overview on application status and processing technology development of titanium alloy [J]. Mater. Rep., 2012, 26(): 360
[5] 叶 勇, 王金彦. 钛合金的应用现状及加工技术发展概况 [J]. 材料导报, 2012, 26(): 360
[6] Li B, Gupta M C. Crack growth life of Ti-3Al-2.5V tubes under internal impulse pressure [J]. Mater. Sci. Eng., 2006, 431A(1-2) : 146
[7] Nan L, Yang Y S, Qi Y H, et al. Rolling process of high-strength TA18 titanium alloy tubes for aviation [J]. Rare Met. Mater. Eng., 2013, 42(1): 166
[7] 南 莉, 杨亚社, 齐元昊 等. 航空用高强TA18钛合金管材的轧制工艺 [J]. 稀有金属材料与工程, 2013, 42(1): 166
[8] Yang Y S, Yang Y F, Luo D C, et al. Study on processing technology of TA18 titanium tubes for aviation [J]. Rare Met. Mater. Eng., 2013, 42(3): 625
[8] 杨亚社, 杨永福, 罗登超 等. 航空用TA18管材加工工艺研究 [J]. 稀有金属材料与工程, 2013, 42(3): 625
[9] Chen Y, Li J S, Sun F, et al. Investigation of the microstructure and texture of TA18 tubes during cold-rolling process [J]. J. Plast. Eng., 2012, 19(1): 35
[9] 陈 逸, 李金山, 孙 峰 等. 冷轧TA18管材变形过程中微观组织及织构 [J]. 塑性工程学报, 2012, 19(1): 35
[10] Singh J, Mahesh S, Roy S, et al. A miniature physical simulator for pilgering [J]. J. Mater. Process. Technol., 2016, 237: 126
[11] Xu J P, Liu C Z, Wu J P, et al. Three-dimensional microstructure and texture evolution of Ti35 alloy applied in nuclear industry during plastic deformation at various temperatures [J]. Mater. Sci. Eng., 2021, 819A: 141508
[12] Zheng G M, Mao X N, Tang B, et al. Evolution of microstructure and texture of a near α titanium alloy during forging bar into disk [J]. J. Alloy. Compd., 2020, 831: 154750
[13] Zhang W F, Wang Y H, Li Y, et al. Performance evaluation and control methods of high strength TA18 alloy tube [J]. Rare Met. Mater. Eng., 2012, 41(7): 1239
[13] 张旺峰, 王玉会, 李 艳 等. 高强度TA18合金管材性能评价与控制方法研究 [J]. 稀有金属材料与工程, 2012, 41(7): 1239
[14] Li H, Wei D, Zhang H Q, et al. Texture evolution and controlling of high-strength titanium alloy tube in cold pilgering for properties tailoring [J]. J. Mater. Process. Technol., 2020, 279: 116520.
[15] Yang Q, Hui S X, Ye W J, et al. Effect of ‘Q’ ratio on texture evolution of Ti-3Al-2.5V alloy tube during rolling [J]. Materials (Basel), 2022, 15(3): 817
[16] Chun Y B, Battaini M, Davies C H J, et al. Distribution characteristics of in-grain misorientation axes in cold-rolled commercially pure titanium and their correlation with active slip modes [J]. Metall. Mater. Trans., 2010, 41A(13) : 3473
[17] Kearns J J. On the relationship among `f' texture factors for the principal planes of zirconium, hafnium and titanium alloys [J]. J. Nucl. Mater., 2001, 299(2): 171
[18] Yu H B, Luan B F, Chen J W, et al. EBSD analysis of the distribution of in-grain misorientation axes in cold-rolled Zr alloy [J]. J. Chin. Electron Microsc. Soc., 2011, 30(Z1): 365
[18] 余泓冰, 栾佰峰, 陈建伟 等. 冷轧锆合金晶粒内取向差轴分布规律的EBSD研究 [J]. 电子显微学报, 2011, 30(Z1): 365
[19] Luan B F, Xiao D P, He F F. Evolution of microstructure and texture of pure zirconium during rolling process [J]. J. Chin. Electron Microsc. Soc., 2012, 31(6): 476
[19] 栾佰峰, 肖东平, 贺方方. 纯锆轧制过程中的组织与织构演变规律 [J]. 电子显微学报, 2012, 31(6): 476
[20] Sheng Z M, Zhang H, Zhang W F, et al. Distribution of texture along tube wall thickness of TA18 alloy tube [J]. Rare Met. Mater. Eng., 2017, 46(10): 3073
[20] 盛泽民, 张 晖, 张旺峰 等. TA18钛合金航空管材织构沿层深的分布 [J]. 稀有金属材料与工程, 2017, 46(10): 3073
[1] 谭德新, 陈诗慧, 罗小丽, 宁小媚, 王艳丽. 富缺陷Pd纳米片的合成和对甘油的电催化氧化性能[J]. 材料研究学报, 2025, 39(8): 632-640.
[2] 周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
[3] 陆通, 王亚娜, 张超, 雷芃, 张鸿荣, 黄光伟, 郑立允. BN掺杂对热变形钕铁硼磁体性能的影响[J]. 材料研究学报, 2025, 39(8): 612-618.
[4] 耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
[5] 王铭宇, 李述军, 和正华, 唐明德, 张思倩, 张浩宇, 周舸, 陈立佳. 激光功率和扫描速度对SLM制备Ti5553合金性能的影响[J]. 材料研究学报, 2025, 39(8): 583-591.
[6] 韩杨燚, 张腾昊, 张可, 赵时雨, 汪创伟, 余强, 李景辉, 孙新军. 终冷温度对Ti-V-Mo复合微合金钢析出相、组织和硬度的影响[J]. 材料研究学报, 2025, 39(7): 533-541.
[7] 刘晶, 李云杰, 秦煜, 李琳琳. GCr15轴承钢中渗碳体粒径的调控对其硬度的影响[J]. 材料研究学报, 2025, 39(7): 521-532.
[8] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[9] 张宁, 王耀奇, 杨毅, 慕延宏, 李震, 陈志勇. Ti65钛合金的超塑变形和微观组织演变[J]. 材料研究学报, 2025, 39(7): 489-498.
[10] 韩磊磊, 王文涛, 吴赟, 陈嘉俊, 赵勇. 无氟化学溶液法制备YBCO超导焊料的高温生长工艺研究[J]. 材料研究学报, 2025, 39(6): 474-480.
[11] 姜爱龙, 谭炳治, 庞建超, 石锋, 张允继, 邹成路, 李守新, 伍启华, 李小武, 张哲峰. 蠕墨铸铁RuT300RuT450的低周疲劳性能和损伤机制[J]. 材料研究学报, 2025, 39(6): 443-454.
[12] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.
[13] 王恒霖, 丁汉林, 柴锋, 罗小兵, 王子健, 项重辰. 调质热处理对不同轧制温度的含Cu低合金高强钢力学性能的影响[J]. 材料研究学报, 2025, 39(6): 401-412.
[14] 袁新雨, 史非, 刘敬肖, 张皓杰, 杨大毅, 王美玉, 任明. Er2O3 对二硅酸锂玻璃陶瓷的结构和性能的影响[J]. 材料研究学报, 2025, 39(6): 455-462.
[15] 李海斌, 徐惠婷, 唐伟, 吕海波, 帅美荣. 热轧碳钢/不锈钢复合板结合界面电解腐蚀的毛细效应[J]. 材料研究学报, 2025, 39(5): 362-370.