材料研究学报, 2025, 39(8): 612-618 DOI: 10.11901/1005.3093.2024.335

研究论文

BN掺杂对热变形钕铁硼磁体性能的影响

陆通1,2, 王亚娜1,2,3, 张超1,2, 雷芃1,2, 张鸿荣1,2, 黄光伟,1,2, 郑立允1,2,4

1.河北工程大学材料科学与工程学院 邯郸 056038

2.河北省稀土永磁材料与应用工程研究中心 邯郸 056038

3.中北大学材料科学与工程学院 太原 030051

4.钢铁研究总院功能材料研究所 北京 100081

Effect of BN Spray-doping on Magnetic Properties and Resistivity of Hot-deformed Nd-Fe-B Magnets

LU Tong1,2, WANG Yana1,2,3, ZHANG Chao1,2, LEI Peng1,2, ZHANG Hongrong1,2, HUANG Guangwei,1,2, ZHENG Liyun1,2,4

1.College of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, China

2.Hebei Engineering Research Center for Rare Earth Permanent Magnetic Materials and Application, Handan 056038, China

3.College of Materials Science and Engineering, North University of China, Taiyuan 030051, China

4.Division of Functional Materials, Central Iron and Steel Research Institute, Beijing 100081, China

通讯作者: 黄光伟,副教授,huangguangwei@hebeu.edu.cn,研究方向为稀土永磁材料

责任编辑: 黄青

收稿日期: 2024-08-15   修回日期: 2025-01-12  

基金资助: 国家重点研发计划(2022YFB3505600)
中央引导地方科技发展资金(206Z1007G)
河北省自然科学基金(E2021402001)

Corresponding authors: HUANG Guangwei, Tel: 13653352095, E-mail:huangguangwei@hebeu.edu.cn

Received: 2024-08-15   Revised: 2025-01-12  

Fund supported: National Key Research and Development Program of China(2022YFB3505600)
Central Government to Guide Local Scientific and Technological Development Project(206Z1007G)
Natural Science Foundation of Hebei Province(E2021402001)

作者简介 About authors

陆 通,男,1999年生,硕士

摘要

用物理喷涂方法在钕铁硼磁体中引入高熔点绝缘BN颗粒,通过热压热变形制备BN掺杂热变形钕铁硼磁体,研究了BN喷涂量对其微观结构、电阻率、磁性能和温度稳定性的影响。结果表明:用物理喷涂方法引入的BN良好地包覆了钕铁硼磁粉。引入BN可显著提高磁体的电阻率,使其电阻率由未引入BN时的153.5 μΩ·cm提高到(喷涂量为0.8%时的)287.7 μΩ·cm。引入适量的BN,可改善磁体的晶粒取向。但是,BN喷涂量的增加使磁体的磁性能和温度稳定性降低。BN喷涂量为0.6%的磁体其综合磁电性能优异:最大磁能积(BH)max为36.67 MGOe;剩磁Br为12.48 kGs;矫顽力Hcj为11.85 kOe;电阻率为254.8 μΩ·cm。在增大磁体电阻率的同时保持较高的磁性能,有利于其在较高的温度应用。

关键词: 金属材料; BN掺杂; 热变形钕铁硼磁体; 电阻率; 磁性能

Abstract

Nd-Fe-B permanent magnets are widely used in aerospace, new energy vehicles, wind power generation and many other fields due to their excellent performance. By increasing the resistivity of the Nd-Fe-B magnets, the temperature rise of the magnet can be effectively reduced and the working stability of the magnet can be improved. Herein, a novel technique was adopted to prepare the BN-doped hot-deformed Nd-Fe-B magnets, i.e. first, by spraying an appropriate amount of BN demolding agent onto the surface of the commercial fast-quenching Nb-Fe-B magnetic powders to obtain the BN-coated magnetic powders (namely 0, 0.2, 0.4, 0.6 and 0.8 of BN, in mass fraction respectively), subsequently, the hot-deformed bulk BN-doped Nb-Fe-B magnets were prepared with the modified powders as raw material by hot pressing process and then hot deformation process. The effect of different BN doping amount on the magnetic properties, resistivity, temperature stability and microstructure of the hot-deformed Nd-Fe-B magnets were studied. The results show that the sprayed BN presents good adhesion on the Nd-Fe-B magnetic powders; The introduction of BN by spraying can significantly improve the resistivity of the magnets, which increases from 153.5 μΩ·cm for magnets of the plain powders to 287.7 μΩ·cm for that of the powers coated with 0.8%BN, implying an increase of 87%. The grain orientation of the magnets can also be improved by the introduction of proper BN. With the increase of coated BN amount, the magnetic properties and temperature stability of the magnets decrease gradually. When the sprayed amount of 0.6% BN, the magnets has excellent comprehensive magnetoelectric performance: the maximum magnetic energy product (BH)max is 36.67 MGOe; the remanence Br is 12.48 kGs; the coercivity Hcj is 11.85 kOe; the resistivity is 254.8 μΩ·cm. It follows that this study provides a technical path to effectively improve the resistivity of magnets while maintaining high magnetic properties, so that the prepared magnets may be suitable for high operating temperature scenarios.

Keywords: metallic materials; BN doping; hot deformation Nd-Fe-B magnets; resistivity; magnetic properties

PDF (13058KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陆通, 王亚娜, 张超, 雷芃, 张鸿荣, 黄光伟, 郑立允. BN掺杂对热变形钕铁硼磁体性能的影响[J]. 材料研究学报, 2025, 39(8): 612-618 DOI:10.11901/1005.3093.2024.335

LU Tong, WANG Yana, ZHANG Chao, LEI Peng, ZHANG Hongrong, HUANG Guangwei, ZHENG Liyun. Effect of BN Spray-doping on Magnetic Properties and Resistivity of Hot-deformed Nd-Fe-B Magnets[J]. Chinese Journal of Materials Research, 2025, 39(8): 612-618 DOI:10.11901/1005.3093.2024.335

钕铁硼永磁材料的综合磁性能优异,其饱和磁化强度(~1.6 T)和各向异性磁场(~7.3 T)都比较高。钕铁硼永磁材料,已经广泛用于智能计算机、永磁电机、航空航天、通讯等领域[1,2]。永磁电机的效率较高、损耗较低和稳定性较高,受到了极大的关注[3]。新能源汽车、风力发电以及节能器械等的迅速发展,对永磁电机用钕铁硼永磁体的性能提出了更高的要求[4]。永磁体在高频交变电磁场中产生的涡流损耗和高速机械运动产生的较高温度(150~200 ℃),使居里温度(~315 ℃)较低的钕铁硼磁体出现热退磁[5~7]

目前,提高钕铁硼磁体高温性能的主要方法有:提高磁体的矫顽力(降低热退磁)和增大磁体的电阻率(降低涡流)。在钕铁硼磁体中添加重稀土元素(Tb和Dy),可提高其矫顽力。但是,较高的成本限制了重稀土的应用[8]。掺杂WC[9]、h-BN[10]、TiC[11]等高熔点纳米颗粒可细化Nd-Fe-B的晶粒,但是使其磁性能降低[12]。在钕铁硼磁体中引入高电阻率绝缘物质,如氧化物[13],氮化物[14]和氟化物生成连续分布的绝缘层[15],可提高其电阻率使涡流降低。采用机械搅拌/介质辅助混粉[16]、高能球磨[17]、电泳沉积[18]、液相化学合成[19]等物理或化学方法,可在热压热变形磁体中引入高电阻率绝缘物质。但是,用常规的物理方法引入的高电阻率物质极易团聚,不利于高电阻率物质的均匀分布。用化学方法引入高电阻率物质的效果较好,但是其过程较为复杂。六方氮化硼是一种高电阻率物质,具有良好的电绝缘性、优异的热稳定性和化学稳定性,在水中的分散性良好,熔点高达2973 ℃。本文用物理喷涂方法引入适量的BN制备热压热变形钕铁硼磁体,研究BN掺杂对其性能的影响。

1 实验方法

实验中使用商用钕铁硼快淬磁粉(MOU-F)(原始磁粉,主要成分为Nd30.3Fe62.88B0.92Co4.2Pr0.1Dy0.02Ga0.51)和氮化硼(BN)离型脱模剂进行喷涂掺杂。先将钕铁硼磁粉平铺在水平平面上,在磁粉表面往复喷涂氮化硼喷剂(喷涂量质量分数分别为0%,0.2%,0.4%,0.6%和0.8%),使其均匀的附着在磁粉表面。然后将喷涂后的混合粉末置于50 ℃的真空干燥箱中真空干燥2 h。对干燥后的混合粉末进行热压变形制备直径为25 mm厚度为6 mm的钕铁硼磁体,热压工艺为:在550 ℃保温1 min,压强约为370 MPa;热变形工艺为:在850 ℃变形80 s、压强约为100 MPa、变形量为70%。

用电火花线切割机将钕铁硼磁体加工成直径为10 mm厚度为6 mm的圆柱形样品,用FT-300A1型导电材料电阻率测试仪和四引线法测试其室温电阻率[20]。用NIM-6200C型磁性能测试仪测量磁体的室温磁性能和温度稳定性。用D8 Advance型X射线衍射仪(XRD)表征磁体的晶体结构(扫描范围为20°~70°,扫描速度为1(°)/min)。用Gemini Sigma 300X型扫描电子显微镜(SEM)和能谱分析(EDS)表征磁体的微观结构和元素分布。

2 结果和讨论

2.1 喷涂BN磁粉的表面形貌和元素分布

图1给出了喷涂0.6%BN磁粉的表面形貌和EDS元素分布。从图1a可以看出,喷涂BN后的磁粉表面均匀地附着一层白色物质。对比喷涂磁粉的区域和Fe、Nd、N的EDS元素分布可知,白色物质为BN颗粒。喷涂后BN在钕铁硼磁粉表面的分布较为均匀,表明用物理喷涂方式引入的BN颗粒能良好地包覆磁粉。

图1

图1   喷涂0.6%BN磁粉表面的SEM、喷涂磁粉的区域以及Fe、Nd、N的EDS图

Fig.1   SEM of the surface of 0.6 % BN magnetic powder (a), Select the area of spraying magnetic powder (b~e) and the EDS diagram of Fe (c), Nd (d) and N (e)


2.2 喷涂BN的热变形钕铁硼磁体的室温电阻率

图2给出了不同BN喷涂量热变形磁体的室温电阻率。可以看出,随着BN喷涂量的增加磁体的电阻率提高。BN喷涂量(质量分数)为0.6%的磁体其电阻率显著提高到251.8 μΩ·cm。BN喷涂量为0.8%的磁体电阻率(287.65 μΩ·cm)比未喷涂BN磁体的电阻率(153.5 μΩ·cm)提高了87%。其原因是,磁体内的高电阻率BN能散射更多的电子,从而使磁体的电阻率提高。同时,磁体中的BN主要分布在富Nd相。在热变形过程中高熔点的BN颗粒使晶粒细化,改善了富Nd相的分布,增加了晶界使电子的运动受阻。因此,添加少量的BN即可使钕铁硼磁体的电阻率大幅度提高[21,22]

图2

图2   BN喷涂量对热变形磁体电阻率的影响

Fig.2   Effect of BN spraying amount on the resistivity of hot-deformed magnet


2.3 喷涂BN热变形钕铁硼磁体的磁性能

图3给出了BN喷涂量对热变形钕铁硼磁体磁性能的影响。图3a给出了不同BN喷涂量磁体的室温退磁曲线,图3b给出了不同BN喷涂量热变形磁体的剩磁、矫顽力和最大磁能积。可以看出,随着BN喷涂量的增加热变形磁体的磁性能呈下降的趋势。磁体的剩磁和最大磁能积,分别从未喷涂时的13.9 kGs和46.63 MGOe下降到喷涂0.8%BN的12.03 kGs和33.26 MGOe。与其相比,喷涂0.2%BN的磁体,其矫顽力出现了上升的拐点。其原因是,在常规热变形过程中熔点较高的BN颗粒以固态存在,从而阻碍了晶粒的生长而使磁体的矫顽力提高。但是,随着BN喷涂量的增加较多的BN在热变形过程中阻碍富Nd相的流动和晶粒转动,且非磁性相BN降低了磁性相的比例,从而使磁体的磁性能降低[23,24]

图3

图3   不同BN喷涂量热变形磁体的室温退磁曲线和BN喷涂量对热变形磁体剩磁Br、矫顽力Hcj以及最大磁能积(BH)max的影响

Fig.3   Room temperature demagnetization curves of hot-deformed magnets with different BN spraying amount (a), the effect of different BN spraying amount on the remanence Br, coercivity Hcj and maximum magnetic energy product (BH)max of hot-deformed magnets (b)


2.4 喷涂BN磁体磁性的温度稳定性

图4给出了不同BN喷涂量热变形磁体在不同温度下的矫顽力。可以看出,磁体的矫顽力随着温度的升高而降低。这种磁体在一定温度(T0~T)范围内矫顽力的温度系数βHcj,为

βHcj=HcjT-HcjT0HcjT0(T-T0)×100%

图4

图4   不同BN喷涂量热变形磁体在不同温度下的矫顽力

Fig.4   Coercivity of hot-deformed magnets with different BN spraying amount at different temperatures


不同BN喷涂量热变形磁体的矫顽力温度系数列于表1。可以看出,随着BN喷涂量的增加磁体矫顽力的温度系数增大,表明磁体的高温稳定性降低。但是,随着BN喷涂量的增加,矫顽力温度系数增大的趋势趋于平缓。从图4还可见,BN喷涂量为0.6%和0.8%的磁体其矫顽力随温度升高下降的曲线重合。其原因是,分布在富Nd相中的高熔点BN颗粒阻碍了富Nd相的流动,使磁体矫顽力的减小,从而使磁体抵抗热退磁的性能降低。但是,较低的BN喷涂量对磁体整体矫顽力温度稳定性的影响较小。

表1   不同BN喷涂量热变形磁体的矫顽力温度系数

Table 1  Temperature coefficient of coercivity of hot-deformed magnets with different BN spraying amount

BN amount / %, mass fraction20-80 oC20-100 oC20-120 oC
0-0.67-0.64-0.60
0.2-0.74-0.69-0.65
0.4-0.78-0.72-0.67
0.6-0.80-0.74-0.68
0.8-0.79-0.73-0.69

新窗口打开| 下载CSV


2.5 BN喷涂热变形钕铁硼磁体的微结构

图5给出了不同BN喷涂量热变形钕铁硼磁体的XRD谱。可以看出,BN喷涂钕铁硼磁体的特征峰均属于Nd2Fe14B相,表明热变形磁体的C轴取向良好。根据(006)与(105)晶面的相对衍射强度比值可估计Nd2Fe14B主相晶粒的取向程度,比值越大表明取向织构越好。未喷涂BN的原始磁体的(006)与(105)比值为1.11,随着BN喷涂量的增加比值逐渐升高,BN喷涂量为0.6%时比值达到最大值1.91,BN喷涂量为0.8%时比值下降为1.58。这表明,喷涂适量的BN可改善热变形钕铁硼磁体的取向织构,但是非磁性相BN使磁体的性能下降。

图5

图5   不同BN喷涂量热变形钕铁硼磁体的XRD谱

Fig.5   XRD patterns of hot-deformed magnets with different BN spraying amount


图6给出了不同BN喷涂量热变形钕铁硼磁体的SEM形貌。图中的白色部分为富Nd相,灰色部分为Nd2Fe14B相。图7给出了BN喷涂量为0.6%磁体的SEM照片和EDS线扫描图,图8 给出了EDS元素分布。可以看出,BN主要分布在富Nd相中。BN喷涂量较低的Nd2Fe14B主相晶粒排列较为规则,富Nd相呈平行的条状连续均匀分布,BN的分布呈线条状。随着喷涂量的增加BN在富Nd相中出现团聚,在富Nd相附近出现缺陷和孔洞。喷涂过多的BN,使磁体的致密性降低。BN的喷涂量为0.8%时磁体内沿着富Nd相的分布方向出现裂痕和较大的缺陷(图8)。其原因是,附着在钕铁硼磁粉表面的BN颗粒过多,在热压变形过程中高熔点的BN颗粒富集在富Nd相中,严重阻碍液态富Nd相的流动和磁体主相晶粒的转动,使磁体的塑性变形能力降低,影响磁体的各向异性和织构的形成,从而降低磁体的磁性能。

图6

图6   不同BN喷涂量热变形钕铁硼磁体的SEM照片

Fig.6   SEM patterns of hot-deformed magnets with different BN spraying amount under different multiples (a, b) 0%, (c, d) 0.2%, (e, f) 0.6%, (g, h) 0.8%


图7

图7   BN喷涂量为0.6%的热变形钕铁硼磁体的SEM照片和EDS线扫描图

Fig.7   SEM (a) and EDS line scan (b) of hot-deformed Nd-Fe-B magnet with 0.6%BN spraying amount


图8

图8   BN喷涂量为0.6%的热变形钕铁硼磁体的SEM照片和EDS元素分布

Fig.8   SEM (a) and EDS element distribution (b-d) of hot-deformed Nd-Fe-B magnet with 0.6%BN spraying amount


3 结论

(1) 物理喷涂引入BN可提高热变形钕铁硼磁体的电阻率,BN喷涂量为0.8%的磁体其电阻率达到287.65 μΩ·cm,比未喷涂BN磁体的电阻率(153.5 μΩ·cm)提高了87%。

(2) 喷涂适量的BN可改善磁体的晶粒取向,喷涂少量BN有利于提高磁体的矫顽力,过量的BN在变形过程中阻碍液态富Nd相的流动和磁体主相晶粒转动,使磁体的致密性和磁体性能降低。BN喷涂量为0.6%的磁体综合性能较高。

参考文献

Coey J M D.

Perspective and prospects for rare earth permanent magnets

[J]. Engineering, 2020, 6(2): 119

[本文引用: 1]

Trench A, Sykes J P.

Rare earth permanent magnets and their place in the future economy

[J]. Engineering, 2020, 6(2): 115

[本文引用: 1]

Gutfleisch O, Willard M A, Brück E, et al.

Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient

[J]. Adv. Mater., 2011, 23(7): 821

[本文引用: 1]

Huang G W, Lu T, Wang Y N, et al.

Research progress and prospect of high electrical resistivity NdFeB permanent magnetic materials

[J]. J. Chin. Soc. Rare Earths, 2024, 42(5): 826

[本文引用: 1]

黄光伟, 陆 通, 王亚娜 .

高电阻率NdFeB永磁材料的研究进展与展望

[J]. 中国稀土学报, 2024, 42(5): 826

[本文引用: 1]

Zheng L Y, Fang K, Li W.

Recent development of high electrical resistivity rare earth permanent magnetic materials

[J]. Mater. China, 2018, 37(9): 645

[本文引用: 1]

郑立允, 房 刊, 李 卫.

高电阻率稀土永磁材料研究进展

[J]. 中国材料进展, 2018, 37(9): 645

[本文引用: 1]

Kwon H W, Kang M S.

Prospect of developing Nd-Fe-B-type magnet with high electrical resistivity

[J]. Rare Met., 2020, 39: 2

Chen R J, Xia X S, Tang X, et al.

Significant progress for hot-deformed Nd-Fe-B magnets: a review

[J]. Materials, 2023, 16(13): 4789

[本文引用: 1]

Hirosawa S, Matsuura Y, Yamamoto H, et al.

Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals

[J]. J. Appl. Phys., 1986, 59(3): 873

[本文引用: 1]

Zheng X F, Li M, Chen R J, et al.

Coercivity enhancement by inhibiting the formation of coarse grains region in hot-deformed Nd-Fe-B magnets with WC nano-particles addition

[J]. Scr. Mater., 2017, 132: 49

[本文引用: 1]

Li M, Chen R J, Jin C X, et al.

Texture and microstructure improvement of hot-deformed magnets with platelet-like nano h-BN addition

[J]. Scr. Mater., 2018, 152: 127

[本文引用: 1]

Li J, Bian Y, Xu K, et al.

Improvement of comprehensive magnetic properties for hot-deformed NdFeB magnets via intergranular additions of nano-TiC

[J]. Mater. Lett., 2020, 267: 127537

[本文引用: 1]

Zheng X F, Chen R J, Lei F, et al.

Impact of nano-particles with high-melting point on magnetic properties and microstructures of hot-deformed Nd-Fe-B magnet

[J]. Powder. Metall. Ind., 2018, 28(6): 42

[本文引用: 1]

郑晓芬, 陈仁杰, 雷 芳 .

高熔点纳米颗粒添加对热变形Nd-Fe-B磁体性能与微观结构的影响

[J]. 粉末冶金工业, 2018, 28(6): 42

[本文引用: 1]

Zheng L Y, Zhang K, Li Y F, et al.

Microstructure and properties of die-upset Nd-Fe-B/Dy2O3 composite magnets

[J]. IEEE Trans. Magn., 2013, 49(7): 3368

[本文引用: 1]

Liu Q Z, Zhang L T, Xu F, et al.

Dysprosium nitride-modified sintered Nd-Fe-B magnets with increased coercivity and resistivity

[J]. Jpn. J. Appl. Phys., 2010, 49(9R): 093001

[本文引用: 1]

Sawatzki S, Dirba I, Schultz L, et al.

Electrical and magnetic properties of hot-deformed Nd-Fe-B magnets with different DyF3 additions

[J]. J. Appl. Phys., 2013, 114(13): 133902

[本文引用: 1]

Li W, Zheng L Y, Bi W C, et al.

Effect of CaF2 addition on the microstructure and magnetic and electrical properties of sintered Nd-Fe-B magnets

[J]. IEEE Trans. Magn., 2014, 50(1): 1001504

[本文引用: 1]

Zheng L Y, Zheng D W, Xin H H, et al.

Microstructure, magnetic properties, and electrical resistivity of Nd-Fe-B/NdF3 composite magnets

[J]. IEEE Trans. Magn., 2014, 50(11): 2103404

[本文引用: 1]

Kautsar Z H, Sepehri-Amin H, Tang X, et al.

High-resistivity anisotropic hot-deformed Nd-Fe-B magnets prepared from DyF3 electrophoretic deposited powders

[J]. J. Alloy. Compd., 2023, 942: 168855

[本文引用: 1]

Zheng L Y, Li W, Zhu M G, et al.

Microstructure, magnetic and electrical properties of the composite magnets of Nd-Fe-B powders coated with silica layer

[J]. J. Alloy. Compd., 2013, 560: 80

[本文引用: 1]

Singh Y.

Electrical resistivity measurements: a review

[A]. International journal of modern physics: Conference series [C]. Singapore: World Scientific Publishing Company, 2013: 745

[本文引用: 1]

Chen H X, Wang R Q, Li J, et al.

Simultaneous enhancement of magnetic properties and electric resistance of hot-deformed Nd-Fe-B magnets by doping insulating nano-diamonds

[J]. J. Alloy. Compd., 2023, 965: 171424

[本文引用: 1]

Zhang M C, Feng Q Y, Liu Y H, et al.

Effect of Al2O3 doping on resistivity and magnetic properties of sintered NdFeB magnets

[J]. Trans. Mater. Heat Treat., 2024, 45(4): 95

[本文引用: 1]

张梦成, 冯泉妤, 刘友好 .

Al2O3掺杂对烧结钕铁硼磁体电阻率和磁性能的影响

[J]. 材料热处理学报, 2024, 45(4): 95

[本文引用: 1]

Li L, Li S H, Zhang M C, et al.

Effect of co-doping of nano-Al and Cu65Ga35on magnetic properties and thermal stability of sintered Nd-Fe-B magnets

[J]. Trans. Mater. Heat Treat., 2022, 43(5): 55

[本文引用: 1]

李 磊, 李燊昊, 张梦成 .

纳米Al及Cu65Ga35共掺杂对烧结钕铁硼磁体磁性能及热稳定性的影响

[J]. 材料热处理学报, 2022, 43(5): 55

[本文引用: 1]

Chen J, Yang H Y, Xu G Q, et al.

Phosphating passivation of vacuum evaporated Al/NdFeB magnets boosting high anti-corrosion performances

[J]. Surf. Coat. Technol., 2020, 399: 126115

[本文引用: 1]

/